

HT99C410/HT99C411 Cordless Phone Controller

Features

- Provide mask type, OTP type and CERDIP window type versions
- Operating voltage: 2.4V~5.0V (mask type), 3.0V~5.0V (OTP type)
- 24 bidirectional I/O lines
- One interrupt input
- One 8-bit and one 16-bit programmable timer/event counters with overflow interrupt
- On-chip crystal and RC oscillator
- Watchdog timer
- 4K×15 program memory ROM

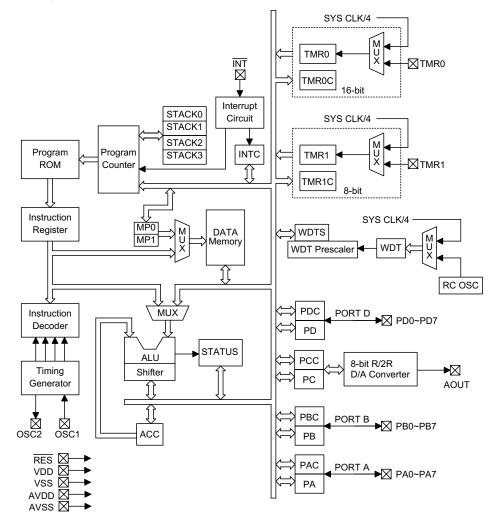
General Description

The HT99C410 is an 8-bit high performance RISC-like microcontroller which combines HT48C50 8-bit microcontroller and 8-bit D/A converter in one chip. It is specifically designed for multiple I/O product applications. It also provides UV-erasable CERDIP window type version HT99C411C and OTP type version HT99C411, both support designers in making

- 160×8 data memory RAM
- Halt function and wake-up feature reduce power consumption
- 63 powerful instructions
- Up to 1 μ s instruction cycle with 4MHz system clock at V_{DD}=5V
- All instructions in 1 or 2 machine cycles
- 15-bit table read instructions
- 4-level subroutine nesting
- Bit manipulation instructions
- Built-in 8-bit D/A converter

fast evaluation of private products during the development stages.

The device is particularly suitable for use in products such as cordless phone controllers, μC dialers, feature phone controllers and various subsystem controllers. A halt feature is included to reduce power consumption.


Function Part No.	Туре	ROM (Bits)	RAM (Bits)	I/O (Lines)	WDT	Timer/ Counter	DAC (Bits)
HT99C410 HT99C411 HT99C411C	Mask OTP CERDIP window	4K×15	160×8	24	\checkmark	2	8
HT99C810 HT99C811 HT99C811C	Mask OTP CERDIP window	8K×16	224×8	48		2	8

1

Selection Table

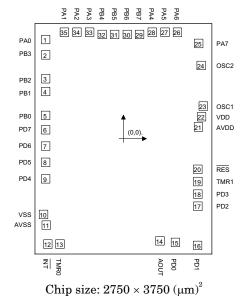
Block Diagram

November 17, 1999

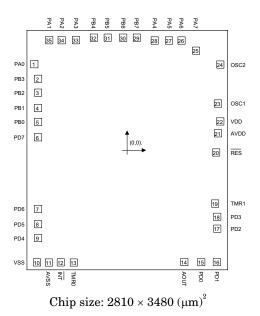
 $\mathbf{2}$

Pin Assignment

U					
	28 PB6		28 PB6		28 PA4
	27 PB7		27 PB7		27 PA5
	<u> </u>		-' L		² ' L =
~	20	d`	20	_ °	² – . –
	20		20		
PA1 5	24 PA6		24 PA6	PB3 5	
PA0 6	23 PA7	PA0 🔤 6	23 PA7		23 OSC1
PB1 7	22 OSC2	PB1 7	22 0SC2	PB1 🔤 7	
РВ0 🛛 8	21 ☐ OSC1	РВ0 🛛 8	₂₁ □ OSC1	РВО 🗆 8	21 RES
VSS 🏼 9		v <u>ss</u> 🏼 9	20 🗆 <u>VDD</u>	PD6 🗆 9	20 7 TMR1
INT 🏳 10	19 RES	INT 🏳 10	₁₉ □ RES	PD5 🗖 10	19 🏳 PD3
TMR0 🖵 11	18 PD2	TMR0 🖵 11	18 🖓 PD2	PD4 🖵 11	18 PD2
NC 🗖 12	17 🖓 PD1	NC 🗖 12	17 🖓 PD1	VSS 🗆 12	17 🖓 PD1
NC 🗖 13	16 PD0	NC 🗖 13	16 PD0		16 PD0
	15 AOUT		15 AOUT	TMR0 🗖 ₁₄	₁₅ АОИТ
HT99C410		НТ99С		HT99C410/	
- 28	SDIP	– 28 CERD	IP window	- 28	SOP
			7		
		РВ5 🗖 1	48 □ PB6		
		РВ4 🗖 2	47 🗆 РВ7		
		NC 🖾 3	46 🗆 NC		
		NC 4	45 🗆 NC		
РВ5 🗖 1		PA3 🗖 5	44 🗆 PA4		
РВ4 🗖 2	₃₉ 口 РВ7	PA2 6	43 🗆 PA5		
РАЗ 🗖 3	38 PA4		42 🗆 PA6		
	37 PA5		41 🗆 PA7		
	36 PA6	РВЗ 🗆 9	40 🗆 OSC2		
	35 PA7	PB2 10	39 🗆 OSC1		
РВЗ 🗖 7	34□ osc2	PB1 11	38 🗆 NC		
		PB0 12	37 🗆 NC		
РВ1 🗆 9		PD7 13			
РВ0 🗖 10		PD6 14			
PD7 11		PD5 115			
PD6 \square 12		PD4 16			
PD5 12	29 PD3				
'°	20 PD2				
		AVSS 118			
			30 PD2		
			29 NC		
			27 D PD1		
			26 🔲 PD0		
	21 NC	NC 24	25 🗆 AOUT		
LT00C/10	/HT99C411	HT99C410/			
- 40		- 48 S	DOUP		


* The analog VDD (AVDD) pad and digital VDD pad must be bonded to VDD pin.
* The analog VSS (AVSS) pad and digital VSS pad must be bonded to VSS pin.
* The TMR0 and TMR1 pads must be bonded to VDD or VSS (if not used).

3


Pad Assignment

HT99C410

 \ast The IC substrate should be connected to VSS in the PCB layout artwork.

* The IC substrate should be connected to VSS in the PCB layout artwork.

4

Pad Coordinates

HT99C411

HT99C411					Unit: µm
Pad No.	X	Y	Pad No.	X	Y
1	-1173.40	1494.90	19	1121.20	-646.90
2	-1173.40	1263.00	20	1121.20	-462.10
3	-1173.40	903.60	21	1130.40	177.40
4	-1173.40	712.60	22	1178.00	332.40
5	-1173.40	352.60	23	1204.90	493.30
6	-1173.40	135.90	24	1173.50	1104.00
7	-1173.40	-113.90	25	1134.60	1436.80
8	-1173.40	-356.90	26	814.60	1606.80
9	-1173.40	-606.70	27	627.20	1606.80
10	-1205.30	-1141.10	28	435.30	1606.80
11	-1164.30	-1302.10	29	245.80	1572.90
12	-1139.70	-1589.00	30	58.10	1572.90
13	-957.20	-1589.00	31	-133.50	1572.90
14	551.30	-1540.00	32	-321.20	1572.90
15	783.10	-1563.50	33	-510.70	1606.80
16	1118.70	-1608.40	34	-702.60	1606.80
17	1121.20	-1018.20	35	-890.00	1606.80
18	1121.20	-835.70			

HT99C411

Unit: µm

					ο πιστ μπι
Pad No.	X	Y	Pad No.	X	Y
1	-1212.30	1124.95	19	1148.75	-696.90
2	-1163.60	933.35	20	1162.85	-30.45
3	-1163.60	752.40	21	1186.35	221.50
4	-1163.60	551.90	22	1215.00	376.50
5	-1163.60	370.95	23	1184.30	610.40
6	-1163.60	170.15	24	1216.00	1119.60
7	-1163.60	-765.40	25	899.70	1300.70
8	-1163.60	-965.90	26	709.55	1432.25
9	-1163.60	-1146.85	27	547.10	1432.25
10	-1176.50	-1464.95	28	360.00	1432.25
11	-1021.50	-1465.00	29	127.45	1469.55
12	-866.50	-1464.85	30	-53.45	1469.55
13	-696.50	-1465.00	31	-254.85	1469.55
14	747.55	-1459.80	32	-435.75	1469.55
15	968.65	-1460.00	33	-668.30	1437.25
16	1171.80	-1460.00	34	-855.40	1437.25
17	1175.00	-1023.15	35	-1017.85	1437.25
18	1175.00	-868.15			

November 17, 1999

$\mathbf{5}$

Pad Description

HT99C410

Pad No.	Pad Name	I/O	Mask Option	Description
1 35~33 28~25	PA0~PA7	I/O	Wake-up Pull-high or None	Bidirectional 8-bit Input/Output port. Each bit can be configured as a wake-up input by mask option. Software instructions determine the CMOS output or schmitt trigger input with or without pull high re- sistor (mask option).
5~2 32~29	PB0~PB7	I/O	_	Bidirectional 8-bit Input/Output port Software instructions determine the NMOS open drain output or schmitt trigger input.
10 11	VSS AVSS	_		Negative power supply, GND Analog negative power supply, AGND
12	ĪNT	Ι		External interrupt schmitt trigger input with pull high resistor. Edge triggered activated during high to low transition.
13	TMR0	Ι		Schmitt trigger input for timer/event counter 0
19	TMR1	Ι		Schmitt trigger input for timer/event counter 1
14	AOUT	0		The D/A converter output can be programmed by D/A controlled register. The register has a total of eight digits from MSB to LSB, and it offers 8-bit resolution for the D/A converter and one LSB is $1/256 V_{DD}$.
20	RES	Ι		Schmitt trigger reset input, active low
22 21	VDD AVDD			Positive power supply, $V_{\rm DD}$ Analog positive power supply, $AV_{\rm DD}$
9~6 15~18	PD7~PD4 PD0~PD3	I/O	Pull-high or None (mask type only)	Bidirectional 8-bit Input/Output port. Software instructions determine the CMOS out- put or schmitt trigger input with or without pull high resistor (mask option).
23 24	OSC1 OSC2	I O	Crystal or RC	OSC1, OSC2 are connected to an RC network or a crystal (determined by mask option) for the internal system clock. In the case of RC operation, OSC2 is the output terminal for 1/4 system clock.

November 17, 1999

Absolute Maximum Ratings

Supply Voltage0.3V to 5.5V	Storage Temperature– 50° C to 125° C
Input VoltageV_{SS}=0.3V to V_{DD}+0.3V	Operating Temperature– $25^{\circ}C$ to $70^{\circ}C$

Note: These are stress ratings only. Stresses exceeding the range specified under Absolute Maximum Ratings may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

D.C. Characteristics

Ta=25°C

Shal	Parameter	Te	est Conditions	Min.	Tym	Max.	Unit
Symbol	Parameter	V _{DD}	Conditions	wiin.	Тур.	max.	Unit
V _{DD} (mask)	Operating Voltage	_		2.4		5.0	V
V _{DD} (OTP)		_		3.0		5.0	V
I _{DD1}	Operating Current	3V	No load,	_	1	2	mA
TDDI	(Crystal OSC)	5V	$f_{SYS}=4MHz$	_	2.5	5	mA
Inne	Operating Current	3V	No load,	_	0.75	1.5	mA
I_{DD2}	(RC OSC)	5V	f _{SYS} =2MHz	_	1.5	5	mA
T	Standby Current	3V	No load,	_		5	μΑ
I_{STB1}	(WDT Enabled)	5V	system halt	_		20	μΑ
	Standby Current	3V	No load,	_		1	μA
I_{STB2}	(WDT Disabled)	5V	system halt	_		2	μA
17	Input Low Voltage for I/O	3V		0		0.9	V
V_{IL}	Ports	5V		0		1.5	V
V	Input High Voltage for I/O	3V		2.1		3	V
V_{IH}	Ports	5V		3.5		5	V
V	Input Low Voltage	3V		0		0.7	V
V_{IL1}	$(\overline{\text{RES}}, \text{TMR0}, \text{TMR1}, \overline{\text{INT}})$	5V		0		1.3	V
V	Input High Voltage	3V		2.3		3	V
V_{IH1}	$(\overline{RES}, TMR0, TMR1, \overline{INT})$	5V		3.8		5	V
Τ	LODest Cale Comment	3V	$V_{OL}=0.3V$	1.5	2.5	_	mA
I _{OL}	I/O Port Sink Current	5V	$V_{OL}=0.5V$	_	6	_	mA
T	I/O Dant Same Course	3V	V _{OH} =2.7V	-1	-1.5		mA
I _{OH}	I/O Port Source Current	5V	V _{OH} =4.5V	_	-3		mA

November 17, 1999

 $\mathbf{7}$

Symbol	Parameter	Te	est Conditions	Min.	Turn	Max.	Unit
	rarameter	V _{DD}	Conditions	IVIII.	Тур.	max.	Unit
P	Pull-high Resistance of	3V		40	60	80	kΩ
R _{PH}	I/O Ports and INT	5V		10	30	50	kΩ
V _{DAC}	DAC Output Level			AV _{SS}		AV _{DD}	V
I _{DAC}	DAC Drive Current	5V	V_{OH} =0.9 V_{DD}		50		μΑ

A.C. Characteristics

Ta=25°C

G 1 1	D (T	est Conditions	3.4.	m	Ъл	T T •4
Symbol	Parameter	V _{DD}	Conditions	Min.	Тур.	Max.	Unit
f _{SYS1}	System Clock (Crystal OSC)	3V		400	_	4000	kHz
		5V		400		4000	kHz
£	System Clock	3V		400		2000	kHz
f_{SYS2}	(RC OSC)	5V		400		3000	kHz
£	Timer I/P Frequency	3V	_	0		4000	kHz
f _{TIMER}	MER (TMR)			0	_	4000	kHz
L		3V		45	90	180	μs
t _{WDTOSC}	Watchdog Oscillator	5V		35	65	130	μs
Ŧ	Watchdog Time-out Period	3V	Without WDT	12	23	45	ms
t_{WDT1}	(RC)	5V	prescaler	9	17	35	ms
t _{WDT2}	Watchdog Time-out Period (System Clock)		Without WDT prescaler	_	1024	_	t _{SYS}
$t_{\rm RES}$	External Reset Low Pulse Width		_	1		_	μs
t _{XST}	System Start-up Timer Period	_	Power-up or wake-up from halt		1024		t _{SYS}
t _{INT}	Interrupt Pulse Width	_		1			μs

Note: t_{SYS}=1/f_{SYS}

For other important system architecture and function description, refer to HT48CX0 data sheet.

November 17, 1999

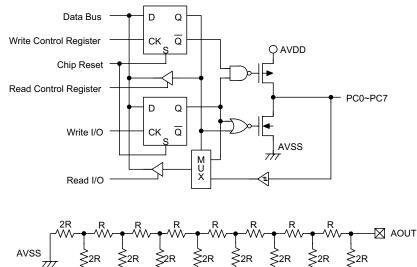
Functional Description

D/A converter description

The HT99C410/HT99C411 built-in 8-bit D/A converter is one of the simple designed methods of the D/A converter. The R/2R lattice method is used in HT99C410/HT99C411 which offers 8-bit resolution.

The HT99C410/HT99C411 general I/O PROTC is replaced by D/A converter register to control the D/A output value and shows in below:

PC7 (D7)


PĊ6

(D6)

PORTC	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
	(MSB)							(LSB)
Determine D/A values	1/2 AV _{DD}	1/4 AV _{DD}	1/8 AV _{DD}	1/16 AV _{DD}	1/32 AV _{DD}	1/64 AV _{DD}	1/128 AV _{DD}	$1/256$ $AV_{ m DD}$

* D/A converter has isolated power line layout itself, in addition, AVDD and AVSS pads are included.

D/A converter circuit

(D3) R=10kΩ

PC3

PC4

(D4)

9

PĊ5

(D5)

PC1 (D1)

PC2

(D2)

PĊ0 (D0)

Execution flow

The system clock for the HT99C410/HT99C411 is derived from either a crystal or an RC oscillator. The system clock is internally divided into four non-overlapping clocks. One instruction cycle consists of four system clock cycles.

Instruction fetching and execution are pipelined in such a way that a fetch takes one instruction cycle while decoding and execution takes the next instruction cycle. However, the pipelining scheme causes each instruction to effectively execute in one cycle. If an instruction changes the program counter, two cycles are required to complete the instruction.

Program counter – PC

The 12-bit program counter (PC) controls the sequence in which the instructions stored in program ROM are executed and its contents specify a maximum of 4096 addresses.

After accessing a program memory word to fetch an instruction code, the contents of the program counter are incremented by one. The program counter then points to the memory word containing the next instruction code.

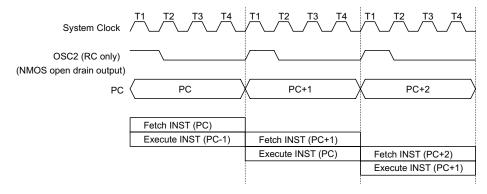
When executing a jump instruction, conditional skip execution, loading PCL register, subroutine call, initial reset, internal interrupt, external interrupt or return from subroutine, the PC manipulates the program transfer by loading the address corresponding to each instruction. The conditional skip is activated by instruction. Once the condition is met, the next instruction, fetched during the current instruction execution, is discarded and a dummy cycle replaces it to get the proper instruction. Otherwise proceed with the next instruction.

The lower byte of the program counter (PCL) is a readable and writeable register (06H). Moving data into the PCL performs a short jump. The destination will be within 256 locations.

When a control transfer takes place, an additional dummy cycle is required.

Program memory – ROM

The program memory is used to store the program instructions which are to be executed. It also contains data, table, and interrupt entries, and is organized into 4096×15 bits, addressed by the program counter and table pointer.


Certain locations in the program memory are reserved for pecial usage:

• Location 000H

This area is reserved for the initialization program. After chip reset, the program always begins execution at location 000H.

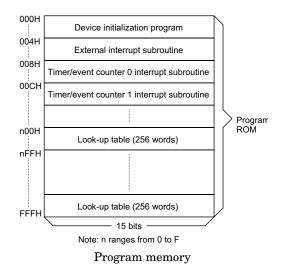
• Location 004H

This area is reserved for the external interrupt service program. If the $\overline{\text{INT}}$ input pin is activated, and the interrupt is enabled and the stack is not full, the program begins execution at location 004H.

Execution flow

10

• Location 008H


This area is reserved for the timer/event counter 0 interrupt service program. If timer interrupt results from a timer/event counter 0 overflow, and if the interrupt is enabled and the stack is not full, the program begins execution at location 008H.

Location 00CH

This area is reserved for the timer/event counter 1 interrupt service program. If timer interrupt results from a timer/event counter 1 overflow, and if the interrupt is enabled and the stack is not full, the program begins execution at location 00CH.

Table location

Any location in the ROM space can be used as look-up tables. The instructions TABRDC [m] (the current page, 1 page=256 words) and TABRDL [m] (the last page) transfer the contents of the lower-order byte to the specified data memory, and the higher-order byte to TBLH (08H). Only the destination of the lower-order byte in the table is well-defined, the other bits of the table word are transferred to the lower portion of TBLH, the remaining one bit is read as 0. The Table Higher-order byte register (TBLH) is read

only. The TBLH is read only and cannot be restored. If the main routine and the ISR (Interrupt Service Routine) both employ the table read instruction, the contents of the TBLH in the main routine are likely to be changed by the table read instruction used in the ISR. Errors can occur. In other words, simultaneously using the table read instruction in the main routine and the ISR should be

					Prog	gram	Cou	nter				
Mode	*11	*10	*9	*8	*7	*6	*5	*4	*3	*2	*1	*0
Initial reset	0	0	0	0	0	0	0	0	0	0	0	0
External interrupt	0	0	0	0	0	0	0	0	0	1	0	0
Timer/event counter 0 overflow	0	0	0	0	0	0	0	0	1	0	0	0
Timer/event counter 1 overflow	0	0	0	0	0	0	0	0	1	1	0	0
Skip						PC	+2					
Loading PCL	*11	*10	*9	*8	@7	@6	@5	@4	@3	@2	@1	@0
Jump, call branch	#11	#10	#9	#8	#7	#6	#5	#4	#3	#2	#1	#0
Return from subroutine	S11	S10	S9	S 8	S 7	S6	S5	S4	S3	S2	S1	S0

Program counter

Note: *11~*0: Program counter bits #11~#0: Instruction code bits S11~S0: Stack register bits @7~@0: PCL bits

11

avoided. However, if the table read instruction has to be applied in both the main routine and the ISR, the interrupt(s) is supposed to be disabled prior to the table read instruction, and will not be enabled until the TBLH has been backed-up. The table pointer (TBLP) is a read/write register (07H), which indicates the table location. Before accessing the table, the location must be placed in TBLP. All table related instructions need 2 cycles to complete the operation. These areas may function as normal program memory depending upon the requirements.

Stack register – STACK

This is a special part of the memory which is used to save the contents of the program counter (PC) only. The stack is organized into 4 levels and is neither part of the data nor part of the program space, and is neither readable nor writeable. The activated level of the stack register is indexed by the stack pointer (SP) and is neither readable nor writeable. At a subroutine call or interrupt acknowledgment, the contents of the program counter are pushed onto the stack. At the end of a subroutine or an interrupt routine, as signaled by a return instruction (RET or RETI), the program counter is restored to its previous value from the stack. After a chip reset, the SP will point to the top of the stack.

If the stack is full and a non-masked interrupt takes place, the interrupt request flag will be recorded but acknowledging will be inhibited. When the stack pointer is decremented (by RET or RETI), the interrupt will be serviced. This feature prevents stack overflow allowing the programmer to use the structure more easily. In a similar case, if the stack is full and a "CALL" is subsequently executed, stack overflow occurs and the first entry will be lost (only the most recent four return addresses are stored).

Data memory - RAM

The data memory is designed with 184×8 bits. The data memory is divided into two functional groups: special function registers and general purpose data memory (160×8). Most of them are read/write, but some are read only.

The special function registers include the indirect addressing register 0 (00H), the memory pointer register 0 (MP0;01H), the indirect addressing register 1 (02H), the memory pointer register 1 (MP1;03H), the accumulator (ACC;05H), the program counter lower-byte register (PCL;06H), the table pointer (TBLP;07H), the table higher-order byte register (TBLH;08H), the watchdog timer option setting register (WDTS;09H), the status register (STATUS;0AH), the interrupt control register (INTC;0BH), the timer/event counter 0 higher-order byte register (TMR0H;0CH), the timer/event counter 0 lower-order byte register (TMR0L;0DH), the timer/event counter 0 control register (TMR0C;0EH), the timer/event counter 1 (TMR1;10H), the timer/event counter 1 control register (TMR1C;11H), the I/O registers (PA;12H, PB:14H. PD:18H) and the I/O control registers (PAC;13H, PBC;15H, PDC;19H). The remaining space before the 60H is reserved for future expansion usage and reading these locations will get a "00H" value. The general purpose data memory, addressed from 60H to FFH, is used for data and control information under instruction command.

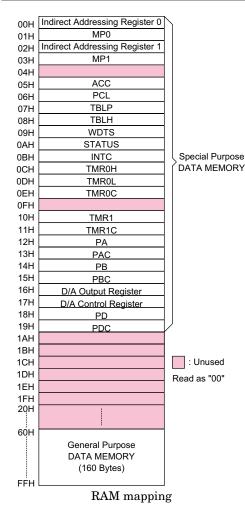

Instruction(s)		Table Location											
	*11	*10	*9	*8	*7	*6	*5	*4	*3	*2	*1	*0	
TABRDC [m]	P11	P10	P9	P8	@7	@6	@5	@4	@3	@2	@1	@0	
TABRDL [m]	1	1	1	1	@7	@6	@5	@4	@3	@2	@1	@0	

Table location

Note: *11~*0: Table location bits @7~@0: Table pointer bits P11~P8: Current program counter bits

November 17, 1999

All data memory areas can execute arithmetic, logic, increment, decrement and rotate operations directly. Except for some dedicated bits, each bit in the data memory can be set and reset by the SET [m].i and CLR [m].i instructions, respectively. They are also indirectly accessible through Memory pointer registers (MP0;01H, MP1;03H).

Indirect addressing register

Location 00H and 02H are indirect addressing registers that are not physically implemented. Any read/write operation of [00H] and [02H] access data memory pointed to by MP0 (01H) and MP1 (03H) respectively. Reading location 00H or 02H indirectly will return the result 00H. Writing indirectly results in no operation.

The function of data movement between two indirect addressing registers, is not supported. The memory pointer registers, MP0 and MP1, are 8-bit registers which can be used to access the data memory by combining corresponding indirect addressing registers.

Accumulator

The accumulator closely relates to the ALU operations. It is also mapped to location 05H of the data memory and is capable of carrying out immediate data operations. The data movement between these two data memories has to pass through the accumulator.

Arithmetic and logic unit – ALU

This circuit performs 8-bit arithmetic and logic operations. The ALU provides the following functions:

- Arithmetic operations (ADD, ADC, SUB, SBC, DAA)
- Logic operations (AND, OR, XOR, CPL)
- Rotation (RL, RR, RLC, RRC)
- Increment and Decrement (INC, DEC)
- Branch decision (SZ, SNZ, SIZ, SDZ)

The ALU not only saves the results of a data operation but also changes the contents of the status register.

Status register - STATUS

This 8-bit status register (0AH) contains the zero flag (Z), carry flag (C), auxiliary carry flag (AC), overflow flag (OV), power down flag (PD) and watchdog time-out flag (TO). The status register not only records the status information but also controls the operation sequence.

With the exception of the TO and PD flags, bits in the status register can be altered by instructions like most other registers. Any data written into the status register will not change the TO or PD flags. It should be noted that operations related to the status register may give different results from those intended. The TO and PD flags can only be changed by system power

13

up, watchdog timer overflow, executing the HALT instruction and clearing the Watchdog Timer.

The Z, OV, AC and C flags generally reflect the status of the latest operations.

On entering the interrupt sequence or executing a subroutine call, the status register will not be automatically pushed onto the stack. If the contents of the status are important and the subroutine can corrupt the status register, precautions must be taken to save it properly.

Interrupt

The HT99C410/HT99C411 provides an external interrupt and internal timer/event counter interrupts. The Interrupt Control register (INTC;0BH) contains the interrupt control bits to set the enable/disable and the interrupt request flags.

Once an interrupt subroutine is serviced, all other interrupts will be blocked (by clearing the EMI bit). This scheme may prevent any further interrupt nesting. Other interrupt requests may occur during this interval but only the interrupt request flag is recorded. If a certain interrupt needs servicing within the service routine, the EMI bit and the corresponding bit of the INTC may be set to permit interrupt nesting. If the stack is full, the interrupt request will not be acknowledged, even if the related interrupt is enabled, until the SP is decremented. If immediate service is desired, the stack must be prevented from becoming full.

All these kinds of interrupt have a wake-up capability. As an interrupt is serviced, a control transfer occurs by pushing the program counter onto the stack, followed by a branch to a subroutine at the specified location in the program memory. Only the contents of the program counter is pushed onto the stack. If the contents of the register and Status register (STATUS) are altered by the interrupt service program which corrupt the desired control sequence, the contents should be saved in advance.

External interrupt is triggered by a high to low transition of \overline{INT} and the related interrupt request flag (EIF; bit 4 of INTC) will be set. When the interrupt is enabled, and the stack is not full and the external interrupt is active, a subroutine call to location 04H will occur. The interrupt request flag (EIF) and EMI bits will be cleared to disable other interrupts.

Labels	Bits	Function
С	0	C is set if the operation results in a carry during an addition operation or if a borrow does not take place during a subtraction operation; otherwise C is cleared. C is also affected by a rotate through carry instruction.
AC	1	AC is set if the operation results in a carry out of the low nibbles in addition or a borrow does not take place from the high nibble into the low nibble in a subtraction; otherwise AC is cleared.
Z	2	Z is set if the result of an arithmetic or logic operation is zero; otherwise Z is cleared.
ov	3	OV is set if the operation results in a carry into the highest-order bit but not a carry out of the highest-order bit, or vice versa; otherwise OV is cleared.
PD	4	PD is cleared when either a system power-up or executing the CLR WDT in- struction. PD is set by executing the HALT instruction.
ТО	5	TO is cleared by a system power-up or executing the CLR WDT or HALT in- struction. TO is set by a WDT time-out.
	6	Undefined, read as "0"
	7	Undefined, read as "0"

STATUS register

November 17, 1999

The internal timer/event counter 0 interrupt is initialized by setting the timer/event counter 0 interrupt request flag (TOF; bit 5 of INTC), which is normally caused by a timer/event counter 0 overflow. When the interrupt is enabled, and the stack is not full and the TOF bit is set, a subroutine call to location 08H will occur. The related interrupt request flag (TOF) will be reset and the EMI bit cleared to disable further interrupts.

The timer/event counter 1 interrupt is operated in the same manner as the timer/event counter 0. The related interrupt control bits ET1I and T1F of timer/event counter 1 are bit 3 and bit 6 of the INTC respectively.

During the execution of an interrupt subroutine, other interrupt acknowledgments are held until the RETI instruction is executed or the EMI bit and the related interrupt control bit are set to 1 (if the stack is not full). To return from the interrupt subroutine, the RET or RETI instruction may be invoked. RETI will set the EMI bit to enable an interrupt service, but RET will not.

Interrupts occurring in the interval between the rising edges of two consecutive T2 pulses, will be serviced on the latter of the two T2 pulses, if the corresponding interrupts are enabled. In case of simultaneous requests the following table shows the priority that is applied. These can be masked by resetting the EMI bit.

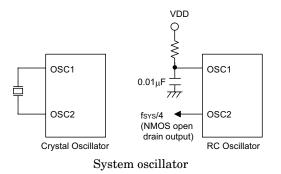
No.	Interrupt Source	Priority	Vector
a	External interrupt	1	04H
b	Timer/event counter 0 overflow	2	08H
с	Timer/event counter 1 overflow	3	0CH

The timer/event counter 0/1 interrupt request flag (T0F/T1F), External interrupt request flag (EIF), Enable timer/event counter 0/1 bit (ET0I/ET1I), Enable external interrupt bit (EEI) and Enable master interrupt bit (EMI) constitute an interrupt control register (INTC) which is located at 0BH in the data memory. EMI, EEI, ET0I, ET1I are used to control the enabling/disabling of interrupts. These bits prevent the requested interrupt from being serviced. Once the interrupt request flags (T0F, T1F, EIF) are set, they will remain in the INTC register until the interrupts are serviced or cleared by a software instruction.

Register	Bit No.	Label	Function
	0	EMI	Controls the master (global) interrupt (1=enabled; 0=disabled)
	1	EEI	Controls the external interrupt (1=enabled; 0=disabled)
	2	ET0I	Controls the timer/event counter 0 interrupt (1=enabled; 0=disabled)
INTC	3	ET1I	Controls the timer/event counter 1 interrupt (1=enabled; 0=disabled)
(0BH)	4	EIF	External interrupt request flag (1=active; 0=inactive)
	5	T0F	Internal timer/event counter 0 request flag (1=active; 0=inactive)
	6 T1F Internal timer/event counter 1 request (1=active; 0=inactive)		Internal timer/event counter 1 request flag (1=active; 0=inactive)
	7		Unused bit, read as "0"

INTC register

15


It is suggested that a program does not use the "CALL" subroutine within the interrupt subroutine. Because interrupts often occur in an unpredictable manner or need to be serviced immediately in some applications, if only one stack is left and enabling the interrupt is not well controlled, once the CALL subroutine operates in the interrupt subroutine, it will damage the original control sequence.

Oscillator configuration

There are two oscillator circuits in the HT99C410/HT99C411. Both are designed for system clocks: the RC oscillator and the crystal oscillator, which are determined by mask options. No matter what oscillator type is selected, the signal provides the system clock. The HALT mode stops the system oscillator and ignores the external signal to conserve power.

If an RC oscillator is used, an external resistor between OSC1 and VDD is needed and the resistance must range from $51k\Omega$ to $1M\Omega$. The system clock, divided by four, is available on OSC2, which can be used to synchronize external logic. The RC oscillator provides the most cost effective solution. However, the frequency of the oscillation may vary with VDD, temperature and the chip itself due to process variations. It is, therefore, not suitable for timing sensitive operations where accurate oscillator frequency is desired.

If a crystal oscillator is used, a crystal across OSC1 and OSC2 is needed to provide the feedback and phase shift needed for oscillator. No other external components are needed. Instead

of a crystal, a resonator can also be connected between OSC1 and OSC2 to get a frequency reference, but two external capacitors in OSC1 and OSC2 are required.

The WDT oscillator is a free running on-chip RC oscillator, and no external components are required. Even if the system enters the power down mode, the system clock is stopped, but the WDT oscillator still works with a period of approximately 78 μ s. The WDT oscillator can be disabled by mask option to conserve power.

Watchdog timer – WDT

The WDT clock source is implemented by a dedicated RC oscillator (WDT oscillator) or instruction clock (system clock divided by 4), decided by mask option. This timer is designed to prevent a software malfunction or the program sequence from jumping to an unknown location with unpredictable results. The watchdog timer can be disabled by mask option. If the watchdog timer is disabled, all the executions related to the WDT result in no operation.

Once the internal WDT oscillator (RC oscillator with period 78 μ s normally) is selected, it is first divided by 256 (8-stages) to get the nominal time-out period of approximately 20 ms. This time-out period may vary with temperature, VDD and process variations. By invoking the WDT prescaler, longer time-out periods can be realized. Writing data to WS2, WS1, WS0 (bit 2,1,0 of the WDTS) can give different time-out periods. If WS2, WS1, WS0 are all equal to 1, the division ratio is up to 1:128, and the maximum time-out period is 2.6 seconds.

If the WDT oscillator is disabled, the WDT clock may still come from the instruction clock and operate in the same manner except that in the HALT state the WDT may stop counting and lose its protection purpose. In this situation the WDT logic can only be restarted by external logic. The high nibble and bit 3 of the WDTS are reserved for user defined flags, which can be used to indicate some specified status.

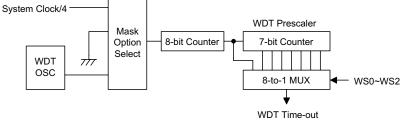
If the device operates in a noisy environment, using the on-chip RC oscillator (WDT OSC) is strongly recommended, since the HALT will stop the system clock.

16

WS2	WS1	WS0	Division Ratio
0	0	0	1:1
0	0	1	1:2
0	1	0	1:4
0	1	1	1:8
1	0	0	1:16
1	0	1	1:32
1	1	0	1:64
1	1	1	1:128

WDTS register

The overflow of the WDT under normal operation will initialize "chip reset" and set the status bit "TO". An overflow in the HALT mode initializes a "warm reset" only when the PC and SP are reset to zero. To clear the contents of the WDT (including the WDT prescaler), there are three methods to be adopted; external reset (a low level to $\overline{\text{RES}}$), software instruction, and a HALT instruction. There are two types of software instruction, CLR WDT and CLR WDT1/ CLR WDT2. But only one of these two types of instruction can be active depending on the mask option - "CLR WDT times selection option". If the "CLR WDT" is selected (i.e. CLR WDT times equal one), any execution of the CLR WDT instruction will clear the WDT. In case CLR WDT1 and CLR WDT2 are chosen (i.e. CLRWDT times equal two), these two instructions must be executed to clear the WDT; otherwise, the WDT may reset the chip due to a time-out.


Power down operation – HALT

The HALT mode is initialized by the HALT instruction and results in the following...

- The system oscillator will turn off but the WDT oscillator keeps running (if the WDT oscillator is selected).
- The contents of the on-chip RAM and registers remain unchanged.
- WDT and WDT prescaler will be cleared and counted again (if the WDT clock is from the WDT oscillator).
- All I/O ports remain in their original status.
- The PD flag is set and the TO flag is cleared.

The system can quit the HALT mode by means of an external reset, an interrupt, an external falling edge signal on port A or a WDT overflow. An external reset causes a device initialization and the WDT overflow performs a "warm reset" Examining the TO and PD flags, the reason for the chip reset can be determined. The PD flag is cleared when system power-up or executing the CLR WDT instruction and is set when the HALT instruction is executed. The TO flag is set if the WDT time-out occurs, which causes a wake-up that only resets the PC and SP, and leaves the others in their original status.

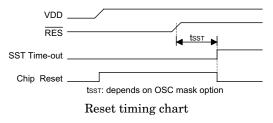
The port A wake-up and interrupt methods can be considered as a continuation of normal execution. Each bit in port A can be independently selected to wake up the device by mask option. Awakening from an I/O port stimulus, the program will resume execution of the next instruction. However, if the program awakens from an interrupt, two sequences may occur. The pro-

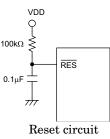
Watchdog timer

17

gram will resume execution at the next instruction if the related interrupt(s) is (are) disabled or the interrupt(s) is enabled but the stack is full. A regular interrupt response takes place if the interrupt is enabled and the stack is not full.

Once the wake-up event(s) occurs, and the system clock comes from a crystal, it takes 1024 $t_{\rm SYS}$ (system clock period) to resume normal operation. In other words, a dummy period will be inserted after the wake-up. If the system clock comes from an RC oscillator, it continues operating immediately. If the wake-up results from an interrupt acknowledgment, the actual interrupt subroutine execution will delay by one more cycle. If the wake-up results in the next instruction execution, this will be executed immediately after the dummy period is completed.

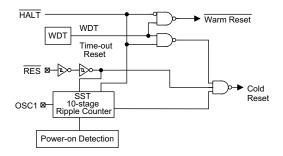

To minimize power consumption, all I/O pins should be carefully managed before entering the HALT status.


Reset

There are three ways in which a reset can occur:

- **RES** reset during normal operation
- RES reset during HALT
- WDT time-out reset during normal operation

The WDT time-out during HALT is different from other chip reset conditions, since it can perform a warm reset that just resets the PC and SP, leaving the other circuits in their original state. Some registers remain unchanged during other reset conditions. Most registers are reset to the "initial condition" when the reset conditions are met. By examining the PD and TO flags, the program can distinguish between different "chip resets".



то	PD	RESET Conditions
0	0	$\overline{\mathrm{RES}}$ reset during power-up
u	u	RES reset during normal operation
0	1	$\overline{\mathrm{RES}}$ wake-up HALT
1	u	WDT time-out during normal operation
1	1	WDT wake-up HALT

Note: "u" means "unchanged"

To guarantee that the system oscillator has started and stabilized, the SST (System Start-up Timer) provides an extra-delay, to delay 1024 system clock pulses when the system powers up or awakes from the HALT state.

When the system power up occurs, the SST delay is added during the reset period. But when the reset comes from the $\overline{\text{RES}}$ pin, the SST delay is disabled. Any wake-up from HALT will enable the SST delay.

November 17, 1999

The functional unit chip reset status is shown below.

PC	000H
Interrupt	Disabled
Prescaler	Cleared
WDT	Cleared. After master reset, WDT starts counting
Timer/event counter (0/1)	Off
Input/output Ports	Input mode
SP	Points to the top of the stack

Timer/event counter

Two timer/event counters are implemented in the HT99C410/HT99C411. The timer/event counter 0 and timer/event counter 1 contain 16-bit and 8-bit programmable count-up counters respectively and the clock may come from an external source or the system clock divided by 4.

Using the internal instruction clock, there is only one reference time-base. The external clock input allows the user to count external events, measure time intervals or pulse width, or generate an accurate time base. There are three registers related to the timer/event counter 0; TMR0H (0CH), TMR0L (0DH), TMR0C (0EH). Writing TMR0L only writes the data into a low byte buffer, and writing TMR0H will write the data and the contents of the low byte buffer into the timer/event counter 0 preload register (16-bit) simultaneously. The timer/event counter 0 Preload register is changed by writing TMR0H operations and writing TMR0L will keep the timer/event counter 0 Preload register unchanged.

Reading TMR0H will also latch the TMR0L into the low byte buffer to avoid the false timing problem. Reading TMR0L returns the contents of the low byte buffer. In other words, the low byte of timer/event counter 0 can not be read directly. It must read the TMR0H first to make the low byte content of timer/event counter 0 latched into the buffer.

There are two sets of registers related to the timer/event counter 1; TMR1 (10H), TMR1C (11H). Writing TMR1 puts the starting value in the timer/event counter 1 Preload register and reading TMR1 gets the contents of the timer/event counter 1.

The TMR0C is the timer/event counter 0 control register, which defines the timer/event counter 0 options. The timer/event counter 1 has the same options as the timer/event counter 0 and is defined by TMR1C.

Label	Bits	Function
	0~2	Unused bits, read as "0"
TE	3	To define the TMR0/TMR1 active edge of the timer/event counter (0=active on low to high; 1=active on high to low)
TON	4	To enable/disable timer counting (0=disabled; 1=enabled)
	5	Unused bits, read as "0"
TM0 TM1	6 7	To define the operating mode 01=Event count mode (external clock) 10=Timer mode (internal clock) 11=Pulse width measurement mode 00=Unused

TMR0C/TMR1C register

19

Register	Reset (power on)	WDT time- out (normal operation)	RES reset (normal operation)	RES reset (HALT)	WDT time-out* (HALT)
TMR1	xxxx xxxx	uuuu uuuu	uuuu uuuu	uuuu uuuu	uuuu uuuu
TMR1C	00-0 1	00-0 1	00-0 1	00-0 1	uu-u u
TMR0H	xxxx xxxx	uuuu uuuu	uuuu uuuu	uuuu uuuu	uuuu uuuu
TMR0L	xxxx xxxx	uuuu uuuu	uuuu uuuu	uuuu uuuu	uuuu uuuu
TMR0C	00-0 1	00-0 1	00-0 1	00-0 1	uu-u u
PC	000H	000H	000H	000H	000H
MP0	xxxx xxxx	uuuu uuuu	uuuu uuuu	uuuu uuuu	uuuu uuuu
MP1	xxxx xxxx	uuuu uuuu	uuuu uuuu	uuuu uuuu	uuuu uuuu
ACC	xxxx xxxx	uuuu uuuu	uuuu uuuu	uuuu uuuu	uuuu uuuu
TBLP	xxxx xxxx	uuuu uuuu	uuuu uuuu	uuuu uuuu	uuuu uuuu
TBLH	-xxx xxxx	-uuu uuuu	-uuu uuuu	-uuu uuuu	-uuu uuuu
STATUS	00 xxxx	1u uuuu	uu uuuu	01 uuuu	11 uuuu
INTC	-000 0000	-000 0000	-000 0000	-000 0000	-uuu uuuu
WDTS	0000 0111	0000 0111	0000 0111	0000 0111	uuuu uuuu
PA	1111 1111	1111 1111	1111 1111	1111 1111	uuuu uuuu
PAC	1111 1111	1111 1111	1111 1111	1111 1111	uuuu uuuu
PB	1111 1111	1111 1111	1111 1111	1111 1111	uuuu uuuu
PBC	1111 1111	1111 1111	1111 1111	1111 1111	uuuu uuuu
D/A Output Register	1111 1111	1111 1111	1111 1111	1111 1111	uuuu uuuu
D/A Control Register	1111 1111	1111 1111	1111 1111	1111 1111	uuuu uuuu
PD	1111 1111	1111 1111	1111 1111	1111 1111	uuuu uuuu
PDC	1111 1111	1111 1111	1111 1111	1111 1111	uuuu uuuu

The states of the registers are summarized in the following table:

Note: "*" means "warm reset"

"u" means "unchanged"

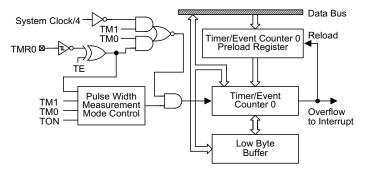
"x" means "unknown"

"-" means "undefined"

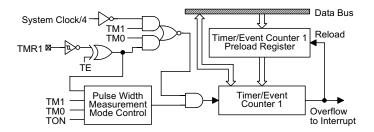
The bits of the special function registers are denoted as "-" if they are not defined in the microcontrollers.

November 17, 1999

HT99C410/HT99C411


The timer/event counter control registers define the operating mode, counting enable or disable and active edge.

The TM0, TM1 bits define the operating mode. The event count mode is used to count external events, which means the clock source comes from an external (TMR0/TMR1) pin. The Timer mode functions as a normal timer with the clock source coming from the instruction clock. The pulse width measurement mode can be used to count the high or low level duration of the external signal (TMR0/TMR1). The counting is based on the instruction clock.


In the event count or timer mode, once the timer/event counter starts counting, it will count from the current contents in the timer/event counter to FFFFH (TMR0)/FFH (TMR1). Once an overflow occurs, the counter is reloaded from the Timer/event Counter Preload register and generates the corresponding interrupt request flag (T0F/T1F; bit 5/6 of INTC) at the same time.

In the pulse width measurement mode with the TON and TE bits equal to one, when the TMR0/TMR1 receives a transient from low to high (or high to low; if the TE bit is 0) it will start counting until the TMR0/TMR1 returns to the original level and resets the TON as well. The measured result will remain in the timer/event counter even if the activated transient occurs again. In other words, only one cycle measurements can be made until the TON is set. The cycle measurement will function again as long as it receives further transient pulse. Note that, in this operation mode, the timer/event counter starts counting not according to the logic level but according to the transient edges. In the case of counter overflows, the counter is reloaded from the timer/event counter preload register and issues an interrupt request similar to the other two modes.

To enable the counting operation, the Timer ON bit (TON; bit 4 of TMR0C/TMR1C) should be set to 1. In the pulse width measurement mode,

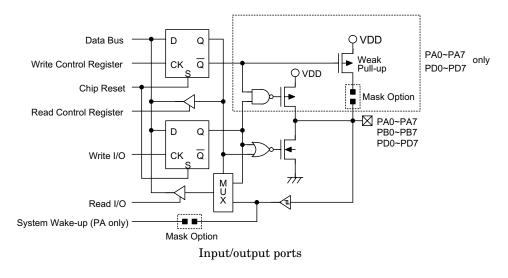
Timer/event counter 0

Timer/event counter 1

November 17, 1999

the TON will be cleared automatically after the measurement cycle is completed. But in the other two modes the TON can only be reset by instruction. The overflow of the timer/event counter is one of the wake-up sources. No matter what the operation mode is, writing a 0 to ETOI/ET1I can disable the corresponding interrupt service.

In the case of timer/event counter OFF condition, writing data to the timer/event counter Preload register will also reload that data to timer/event counter. But if the Timer/event counter is turned on, data written to the timer/event counter will only be kept in the Timer/event counter Preload register. The Timer/event counter will still operate until an overflow occurs.


When the timer/event counter (reading TMR0H/TMR1) is read, the clock will be blocked to avoid errors. As this may result in a counting error, this must be taken into consideration by the programmer.

Input/output ports

There are 24 bidirectional input/output lines in the HT99C410/HT99C411, labeled PA, PB and PD, which are mapped to the data memory of [12H], [14H], and [18H] respectively. All these I/O ports can be used for input and output operations. For input operation, these ports are non-latching, that is, the inputs must be ready at the T2 rising edge of instruction MOV A,[m] (m=12H, 14H, or 18H). For output operation, all data is latched and remains unchanged until the output latch is rewritten.

Each I/O line has its own control register (PAC, PBC, PDC) to control the input/output configuration. With this control register, CMOS output or schmitt trigger input with or without pull-high resistor (mask option) structures can be reconfigured dynamically (i.e., on-the-fly) under software control. To function as an input, the corresponding latch of the control register must write a 1. The pull-high resistance will exhibit automatically if the pull-high option is selected. The input source(s) also depend(s) on the control register. If the control register bit is "1", the input will read the pad state. If the control register bit is "0", the contents of the latches will move to the internal bus. The latter is possible in "read-modify-write" instruction. For output function, CMOS is the only configuration. These control registers are mapped to locations 13H, 15H, and 19H.

After a chip reset, these input/output lines stay at high levels or floating (mask option). Each bit of these input/output latches can be set or cleared by the SET [m].i or CLR [m].i (m=12H, 14H or 18H) instruction.

22

Some instructions first input data and then follow the output operations. For example, the SET [m].i, CLR [m].i, CPL [m] and CPLA [m] instructions read the entire port states into the CPU, execute the defined operations (bit-operation), and then write the results back to the latches or the accumulator.

Each line of port A has the capability to wake-up the device.

The 8-bit D/A output register is mapped to the

data memory of [16H] and its corresponding control register is mapped to location [17H] which must be set to 0 after initialization, when using the D/A function.

Mask option

The following table shows five kinds of mask options in the HT99C410/HT99C411. All the mask options must be defined to ensure proper system functioning.

No.	Mask Option
1	OSC type selection. This option is to decide whether an RC or Crystal oscillator is cho- sen as system clock. If the Crystal oscillator is selected, the XST (Crystal Start-up Timer) default is activated; otherwise the XST is disabled.
2	WDT source selection. There are three types of selection: on-chip RC oscillator, in- struction clock or disable the WDT.
3	CLRWDT times selection. This option defines how to clear the WDT by instruction. One time means that the CLR WDT instruction can clear the WDT. Two times means that only if both of the CLR WDT1 and CLR WDT2 instructions have been exe- cuted, then the WDT can be cleared.
4	Wake-up selection. This option defines the activity of the wake-up function. External I/O pins (PA only) all have the capability to wake-up the chip from a HALT.
5	Pull-high selection. This option is to determine whether the pull-high resistance is vis- ible or not in the input mode of the I/O ports. Each bit of an I/O port can be independ- ently selected. (See Note)

Note: There are no pull-high selections in port B of HT99C410/HT99C411.

There are pull-high selections in port A and port D of HT99C410 but they are always pulled-high in port A and port D of HT99C411.

23

There are no mask option in port C of HT99C410/HT99C411

HT99C411 PROM programming and verification

The program memory used in the HT99C411 is arranged into a $4K \times 15$ bits program PROM and a 1×14 bits option PROM. The program code and option code are stored in the program PROM and option PROM. The programming of PROM can be summarized in nine steps as described below:

- Power on
- Set VPP $(\overline{\text{RES}})$ to 12.5V
- Set $\overline{CS}(PA5)$ to low

Let PA3~PA0 (AD3~AD0) be the address and data bus and the PA4 (CLK) be the clock input. The data on the AD3~AD0 pins will be clocked into or out of the HT99C411 on the falling edge of PA4 (CLK) for PROM programming and verification.

The address data contains the code address (11 bits) and two option bits. A complete write cycle will contain 4 CLK cycles. The first cycle, bits 0~3 of the address are latched into the HT99C411. The second and third cycles, bits 4~7 and bits 8~10 are latched respectively. The fourth cycle, bit 2 is the TSEL option bit and bit 3 is the OSEL option bit. Bit 3 in the third cycle and bits 0~1 in the fourth cycle are undefined. If the TSEL is "1" and the OSEL is "0", the TEST memory will be read. If the TSEL is "0" and the OSEL is "1", the option PROM will be accessed. If both the TSEL and OSEL are "0", the program PROM will be managed.

The code data is 14 bits wide. A complete read/write cycle contains 4 CLK cycles. In the first cycle, bits 0~3 of the code data are accessed. In the second and third, bits 4~7 and bits 8~11 are accessed respectively. In the fourth cycle, bits 12~13 are accessed. Bits 14~15 are undefined. During code verification, reading will return the result "00".

Select the TSEL and OSEL to program and verify the program PROM and the option PROM. Use the R/W(PA6) to select either programming or verification

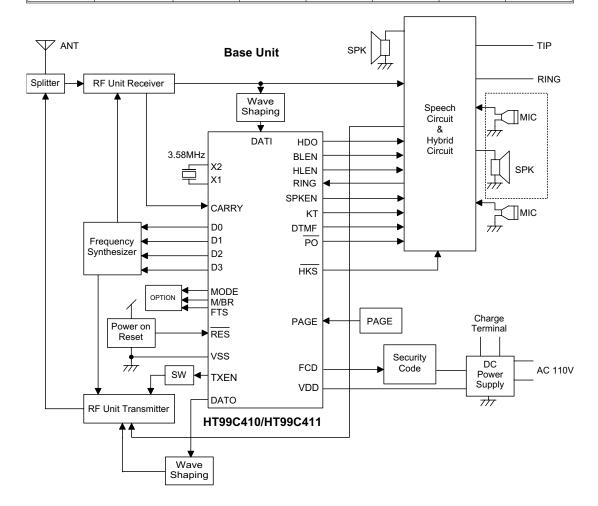
The address is incremented by one automatically after a code verification cycle. If the discontinued address programming or verification is carried out, the automatic addressing increment is disabled. For the discontinued address programming and verification, the \overline{CS} pin must return to a high level for a programming or verification cycle, i.e. if a discontinued address is implemented, the programming or verification cycle must be interrupted and restarted as well.

The related pins of PROM programming and verification are listed in the following table.

Pin Name	Function	Description
PA0	AD0	Bit 0 of address/data bus
PA1	AD1	Bit 1 of address/data bus
PA2	AD2	Bit 2 of address/data bus
PA3	AD3	Bit 3 of address/data bus
PA4	CLK	Serial clock input for ad- dress and data
PA5	$\overline{\mathrm{CS}}$	Chip select, active low
PA6	R/W	Read/write control input
RES	VPP	Programming power supply

The timing charts of programming and verification are as shown. There is a LOCK signal for code protection. If the LOCK is "1", reading the code will return the result "1". However, if the LOCK is "0", the code protection is disabled and the code always can be read until the LOCK is programmed as "1".

November 17, 1999



Application Circuits

Cordless phone controller arrangement

• Base unit: HT99C410/HT99C411

PA0	PO	PB0	INUSE	PD0	MODE	AOUT	DTMF
PA1 PA2 PA3	DATI DATO TXEN	PB1 PB2 PB3	KT RING HKS	PD1 PD2 PD3	M/BR CARRY LED		
PA4 PA5 PA6 PA7	PWDN FTS FCD INT/PAGE	PB4 PB5 PB6 PB7	HDO HLEN BLEN SPKEN	PD4 PD5 PD6 PD7	D0 D1 D2 D3		

25

Instruction Set Summary

ArithmeticADD A,[m]Add data memory to ACCZ,C,AC,OVADD A,xAdd immediate data to ACCZ,C,AC,OVADD A,xAdd immediate data to ACCZ,C,AC,OVADC A,[m]Add ACC to register with carryZ,C,AC,OVADC A,[m]Add ACC to register with carryZ,C,AC,OVSUB A,xSubtract immediate data from ACCZ,C,AC,OVSUB A,[m]Subtract data memory from ACC with result in data memoryZ,C,AC,OVSBC A,[m]Subtract data memory from ACC with carryZ,C,AC,OVSBC A,[m]Subtract data memory from ACC with carry, result in data memoryZ,C,AC,OVSBC A,[m]Subtract data memory from ACC with carry, result in data memoryZ,C,AC,OVSBC A,[m]Subtract data memory from ACC with carry, result in data memoryZ,C,AC,OVSBC A,[m]OR data memory to ACCZOR A,[m]OR ACC to data memoryZOR A,[m]OR ACC to data memoryZORM A,[m]ND ACC to data memoryZORM A,[m]ND ACC to data memoryZOR A,xOR immediate data to ACCZOR A,xOR immediate data to ACCZOR A,xOR immediate data to ACCZOR A,xExclusive-OR immediate data to ACCZOR A,xExclusive-OR immediate data to ACCZOR A,xExclusive-OR immediate data to ACCZ <th>Mnemonic</th> <th>Description</th> <th>Flag Affected</th>	Mnemonic	Description	Flag Affected
ADDM A,[m]Add ACC to data memoryZ, C, AC, OVADD A,xAdd immediate data to ACCZ, C, AC, OVADC A,[m]Add data memory to ACC with carryZ, C, AC, OVADC A,[m]Add ACC to register with carryZ, C, AC, OVSUB A,xSubtract data memory from ACCZ, C, AC, OVSUB A,[m]Subtract data memory from ACC with carryZ, C, AC, OVSUB A,[m]Subtract data memory from ACC with carryZ, C, AC, OVSBCM A,[m]Subtract data memory from ACC with carry, result in data memoryZ, C, AC, OVSBCM A,[m]Subtract data memory from ACC with carry, result in dataZ, C, AC, OVBAC (m]Decimal adjust ACC for addition with result in data memoryCLogic OperationZZAND A,[m]OR data memory to ACCZAND A,[m]AND ACC to data memoryZOR A,[m]OR Act an emeory to ACCZXOR A,[m]AND ACC to data memoryZOR A,[m]OR ACC to data memoryZAND A,xAND immediate data to ACCZOR A,[m]Complement data to ACCZOR A,xComplement data memory with result in ACCZCPLA [m]Complement data memoryZDECA [m]Increment data memory with result in ACCZDECA [m]Increment data memory with result in ACCZDECA [m]Increment data memory with result in ACCZDECA [m]Rotate data memory right with result in ACCZDECA [m]Rotate data memory right through carry <th>Arithmetic</th> <th></th> <th></th>	Arithmetic		
ADDM A,[m]Add ACC to data memoryZ,C,AC,OVADD A,xAdd immediate data to ACCZ,C,AC,OVADC A,[m]Add data memory to ACC with carryZ,C,AC,OVADC A,[m]Add ACC to register with carryZ,C,AC,OVSUB A,xSubtract data memory from ACCZ,C,AC,OVSUB A,[m]Subtract data memory from ACC with carryZ,C,AC,OVSUB A,[m]Subtract data memory from ACC with carryZ,C,AC,OVSBCM A,[m]Subtract data memory from ACC with carry, result in data memoryZ,C,AC,OVBCM A,[m]Subtract data memory from ACC with carry, result in data memoryZ,C,AC,OVDAA [m]Decimal adjust ACC for addition with result in data memoryZ,C,AC,OVDAA [m]OR data memory to ACCZOR A,[m]OR data memory to ACCZXOR A,[m]AND ACC to data memory to ACCZND A,[m]AND ACC to data memoryZORM A,[m]OR ACC to data memoryZAND A,[m]OR ACC to data memoryZAND A,[m]Complement ACCZNOR A,[m]Complement data to ACCZOR A,xComplement data memory with result in ACCZCPLA [m]Complement data memory with result in ACCZDCL [m]Increment data memory with result in ACCZDECA [m]Increment data memory with result in ACCZDECA [m]Increment data memory with result in ACCZDECA [m]Rotate data memory right with result in ACCZDECA [m]Rotate data memory right th	ADD A,[m]	Add data memory to ACC	Z,C,AC,OV
ADC A,[m]Add data memory to ACC with carryZ,C,AC,OVADCM A,[m]Add ACC to register with carryZ,C,AC,OVSUB A,xSubtract immediate data from ACCZ,C,AC,OVSUB A,[m]Subtract data memory from ACCZ,C,AC,OVSUB A,[m]Subtract data memory from ACC with result in data memoryZ,C,AC,OVSBC A,[m]Subtract data memory from ACC with carryZ,C,AC,OVSBC A,[m]Subtract data memory from ACC with carryZ,C,AC,OVSBC M,[m]Subtract data memory from ACC with carry, result in dataT,C,AC,OVDA [m]Decimal adjust ACC for addition with result in data memoryCLogic OperationTZAND A,[m]OR data memory to ACCZXOR A,[m]OR data memory to ACCZXOR A,[m]AND ACC to data memoryZXORM A,[m]OR ACC to data memoryZXOR A,[m]OR ACC to data memoryZXOR A,[m]CC data memoryZXOR A,[m]C sclusive-OR ACC to data memoryZXOR A,xC immediate data to ACCZXOR A,xComplement data memory with result in ACCZCPL [m]Complement data memory with result in ACCZCPL [m]Increment data memory with result in ACCZDECA [m]Decrement data memory with result in ACCZDECA [m]Decrement data memory right with result in ACCZDECA [m]Rotate data memory right with result in ACCZDECA [m]Rotate data memory right through carry with	ADDM A,[m]		Z,C,AC,OV
ADCM A,[m]Add ACC to register with carryZ,C,AC,OVSUB A,xSubtract immediate data from ACCZ,C,AC,OVSUB A,[m]Subtract data memory from ACC with result in data memoryZ,C,AC,OVSBC A,[m]Subtract data memory from ACC with carryZ,C,AC,OVSBC A,[m]Subtract data memory from ACC with carryZ,C,AC,OVSBC A,[m]Subtract data memory from ACC with carryZ,C,AC,OVSBC A,[m]Subtract data memory from ACC with carryZ,C,AC,OVBA [m]Decimal adjust ACC for addition with result in data memoryC Logic Operation AND A,[m]OR data memory to ACCZNOR A,[m]Exclusive-OR data memory to ACCZXOR A,[m]Exclusive-OR data memoryZORM A,[m]OR ACC to data memoryZORM A,[m]OR ACC to data memoryZORM A,[m]OR ACC to data memoryZORM A,[m]Complement data to ACCZXORM A,[m]Complement data memoryZAND A,xAND immediate data to ACCZXOR A,xExclusive-OR immediate data to ACCZCPL [m]Complement data memoryZDECA [m]Increment data memory with result in ACCZDEC [m]Decrement data memoryZDECA [m]Decrement data memory with result in ACCZDEC [m]Decrement data memoryZDECA [m]Rotate data memory right with result in ACCZDEC [m]Decrement data memory with result in ACCC <td>ADD A,x</td> <td>Add immediate data to ACC</td> <td>Z,C,AC,OV</td>	ADD A,x	Add immediate data to ACC	Z,C,AC,OV
SUB A,xSubtract immediate data from ACCZ,C,AC,OVSUB A,[m]Subtract data memory from ACC with result in data memoryZ,C,AC,OVSUBM A,[m]Subtract data memory from ACC with carryZ,C,AC,OVSBC A,[m]Subtract data memory from ACC with carryZ,C,AC,OVSBC M,[m]Subtract data memory from ACC with carryZ,C,AC,OVDAA [m]Decimal adjust ACC for addition with result in data memoryCLogic OperationZAND A,[m]OR data memory to ACCZOR A,[m]OR data memory to ACCZOR A,[m]OR data memory to ACCZOR A,[m]OR data memory to ACCZORM A,[m]AND ACC to data memoryZANDM A,[m]OR ACC to data memoryZORM A,[m]Exclusive-OR ACC to data memoryZAND A,xAND immediate data to ACCZXOR A,xOR immediate data to ACCZXOR A,xExclusive-OR immediate data to ACCZYon A,xOR immediate data to ACCZCPL [m]Complement data memory with result in ACCZIncrement and DecrementZINCA [m]Increment data memory with result in ACCZDEC [m]Decrement data memory right with result in ACCCRRA [m]Rotate data memory right through carry with result in ACC </td <td>ADC A,[m]</td> <td>Add data memory to ACC with carry</td> <td>Z,C,AC,OV</td>	ADC A,[m]	Add data memory to ACC with carry	Z,C,AC,OV
SUB A,[m]Subtract data memory from ACCZ,C,AC,OVSUBM A,[m]Subtract data memory from ACC with result in data memoryZ,C,AC,OVSBC A,[m]Subtract data memory from ACC with carryZ,C,AC,OVSBCM A,[m]Subtract data memory from ACC with carry, result in dataZ,C,AC,OVBA [m]Decimal adjust ACC for addition with result in data memoryCLogic OperationAND A,[m]AND data memory to ACCZOR A,[m]OR data memory to ACCZXOR A,[m]Exclusive-OR data memory to ACCZAND A,[m]AND ACC to data memory to ACCZAND A,[m]OR data CC to data memoryZORM A,[m]OR ACC to data memoryZAND A,xAND immediate data to ACCZOR A,xOR immediate data to ACCZCOR A,xOR immediate data to ACCZCPL [m]Complement data memoryZCPLA [m]Complement data memoryZIncrement adta memoryZZDECA [m]Decrement data memory with result in ACCZINCA [m]Increment data memory with result in ACCZDEC [m]Decrement data memory with result in ACCZDEC [m]Decrement data memory right with result in ACCZRRA [m]Rotate data memory right with result in ACCZDEC [m]Decrement data memory right with result in ACCCRRA [m]Rotate data memory right with result in ACCCRRA [m]Rotate data memory right with result in A	ADCM A,[m]	Add ACC to register with carry	Z,C,AC,OV
SUBM A,[m]Subtract data memory from ACC with result in data memory SBC A,[m]Subtract data memory from ACC with carry Z,C,AC,OV Z,C,AC,OVSBCM A,[m]Subtract data memory from ACC with carry, result in data memoryZ,C,AC,OVDAA [m]Decimal adjust ACC for addition with result in data memoryCLogic OperationAND A,[m]AND data memory to ACCZOR A,[m]OR data memory to ACCZND A,[m]AND AcC to data memory to ACCZNDM A,[m]AND ACC to data memoryZORM A,[m]OR ACC to data memoryZORM A,[m]Chata data to ACCZXORM A,[m]Exclusive-OR ACC to data memoryZXOR A,xOR immediate data to ACCZVOR A,xComplement data memory with result in ACCZCPL [m]Complement data memoryZCPLA [m]Complement data memory with result in ACCZIncrement and DecrementZZINCA [m]Increment data memory with result in ACCZDEC [m]Decrement data memory with result in ACCZDEC [m]Decrement data memory with result in ACCZRRA [m]Rotate data memory right with result in ACCCRRA [m]Rotate data memory right with result in ACCCRCA [m]Rotate data memory right with result in ACCCRCA [m]Rotate data memory right through carry with result in ACCCRCA [m]Rotate data memory right through carryCRotate data memory right with		Subtract immediate data from ACC	
SBC A,[m]Subtract data memory from ACC with carry Subtract data memory from ACC with carry, result in data memoryZ,C,AC,OV Z,C,AC,OVBAC [m]Decimal adjust ACC for addition with result in data memoryCLogic OperationCAND A,[m]AND data memory to ACC OR A,[m]ZOR A,[m]OR data memory to ACC Exclusive-OR data memoryZXOR A,[m]OR data memory to ACC AND A,[m]ZNDM A,[m]AND ACC to data memory Exclusive-OR ACC to data memory ZZXOR A,[m]OR ACC to data memory DR ACC to data memoryZXOR A,[m]OR ACC to data memory Exclusive-OR ACC to data memory ZZXOR A,xAND immediate data to ACC CZXOR A,xOR immediate data to ACC ZZXOR A,xExclusive-OR immediate data to ACC ZZCPLA [m]Complement data memory CZIncrement and DecrementZINCA [m]Increment data memory with result in ACC ZZDEC [m]Decrement data memory with result in ACC ZZRA [m]Rotate data memory right with result in ACC ZZRA [m]Rotate data memory right with result in ACC ZCRC [m]Rotate data memory right with result in ACC ZCRC [m]Rotate data memory right through carry with result in ACC CCRC [m]Rotate data memory right through carry with result in ACC CNone RRLA [m]Rotate data memory right through carry with result in ACC CNone <td>SUB A,[m]</td> <td></td> <td>Z,C,AC,OV</td>	SUB A,[m]		Z,C,AC,OV
SBCM A,[m]Subtract data memory from ACC with carry, result in data memoryZ,C,AC,OVDAA [m]Decimal adjust ACC for addition with result in data memoryCLogic OperationAND A,[m]AND data memory to ACCZOR A,[m]OR data memory to ACCZAND A,[m]AND ACC to data memory to ACCZAND A,[m]AND ACC to data memoryZORM A,[m]OR ACC to data memoryZORM A,[m]Exclusive-OR ACC to data memoryZORM A,[m]Exclusive-OR ACC to data memoryZORA,xOR immediate data to ACCZOR A,xOR immediate data to ACCZCPL [m]Complement data memoryZCPL [m]Complement data memory with result in ACCZIncrement and DecrementZINCA [m]Increment data memory with result in ACCZDEC [m]Decrement data memory with result in ACCZDEC [m]Decrement data memory with result in ACCZRA [m]Rotate data memory right with result in ACCZRCA [m]Rotate data memory right with result in ACCCRR [m]Rotate data memory right through carry with result in ACCCRRCA [m]Rotate data memory right through carry with result in ACCCRC [m]Rotate data memory right through carry with result in ACCCRC [m]Rotate data memory right through carry with result in ACCCRRA [m]Rotate data memory right through carry with result in ACCCRR			
memory Decimal adjust ACC for addition with result in data memoryCLogic OperationCAND A,[m]AND data memory to ACCZOR A,[m]OR data memory to ACCZXOR A,[m]Exclusive-OR data memory to ACCZANDM A,[m]AND ACC to data memoryZORM A,[m]OR ACC to data memoryZORM A,[m]OR ACC to data memoryZXORM A,[m]Exclusive-OR ACC to data memoryZORM A,[m]OR ACC to data memoryZXORM A,[m]Exclusive-OR ACC to data memoryZXORM A,[m]Culsive-OR ACC to data memoryZAND A,xAND immediate data to ACCZCOR A,xOR immediate data to ACCZCPL [m]Complement data memoryZCPL [m]Complement data memoryZDEC [m]Increment data memory with result in ACCZINCA [m]Increment data memory with result in ACCZDEC [m]Decrement data memory with result in ACCZDEC [m]Decrement data memory with result in ACCZRotate data memory right with result in ACCCRRRA [m]Rotate data memory right with result in ACCCRRCA [m]Rotate data memory right through carry with result in ACCCRCA [m]Rotate data memory right through carryCRLA [m]Rotate data memory right through carry with result in ACCNoneRLCA [m]Rotate data memory left through carry with result in ACCNone			
DAA [m]Decimal adjust ACC for addition with result in data memoryCLogic OperationImage: Constraint of the second sec	SBCM A,[m]		Z,C,AC,OV
Logic OperationAND A,[m]AND data memory to ACCZOR A,[m]OR data memory to ACCZXOR A,[m]Exclusive-OR data memory to ACCZANDM A,[m]AND ACC to data memoryZORM A,[m]OR ACC to data memoryZORM A,[m]OR ACC to data memoryZORM A,[m]OR ACC to data memoryZORM A,[m]Exclusive-OR ACC to data memoryZAND A,xAND immediate data to ACCZOR A,xOR immediate data to ACCZCOR A,xOR immediate data to ACCZCOR A,xComplement data memoryZCPL [m]Complement data memory with result in ACCZIncrement and DecrementZINCA [m]Increment data memory with result in ACCZDEC [m]Decrement data memory with result in ACCZDEC [m]Decrement data memory with result in ACCZDEC [m]Decrement data memory right with result in ACCZRRA [m]Rotate data memory right with result in ACCCRRA [m]Rotate data memory right through carry with result in ACCCRRC [m]Rotate data memory right through carry with result in ACCCRRC [m]Rotate data memory right through carry with result in ACCCRRA [m]Rotate data memory right through carry with result in ACCCRRC [m]Rotate data memory right through carry with result in ACCCRRA [m]Rotate data memory left with result in ACCNoneRL [m] <td></td> <td></td> <td></td>			
AND A.[m]AND data memory to ACCZOR A.[m]OR data memory to ACCZXOR A.[m]Exclusive-OR data memory to ACCZANDM A.[m]AND ACC to data memoryZORM A.[m]OR ACC to data memoryZORM A.[m]OR ACC to data memoryZXORM A.[m]Exclusive-OR ACC to data memoryZAND A.xAND immediate data to ACCZOR A.xOR immediate data to ACCZOR A.xOR immediate data to ACCZCPL [m]Complement data memory with result in ACCZCPLA [m]Increment data memory with result in ACCZINCA [m]Increment data memory with result in ACCZINC [m]Increment data memory with result in ACCZDEC [m]Decrement data memory with result in ACCZRate tableZZRotateZNoneRRA [m]Rotate data memory right with result in ACCCRRC [m]Rotate data memory right through carry with result in ACCCRRC [m]Rotate data memory right with result in ACCCRRC [m]Rotate data memory right through carry with result in ACCCRRC [m]Rotate data memory right through carry with result in ACCCRRA [m]Rotate data memory right through carry with result in ACCCRRA [m]Rotate data memory right through carry with result in ACCNoneRLA [m]Rotate data memory left with result in ACCNoneRL [m]Rotate data memory left with re	DAA [m]	Decimal adjust ACC for addition with result in data memory	С
OR A,[m]OR data memory to ACCZXOR A,[m]Exclusive-OR data memory to ACCZANDM A,[m]AND ACC to data memoryZORM A,[m]OR ACC to data memoryZXOR M,[m]OR ACC to data memoryZXORM A,[m]Exclusive-OR ACC to data memoryZAND A,xAND immediate data to ACCZOR A,xOR immediate data to ACCZXOR A,xExclusive-OR immediate data to ACCZCPL [m]Complement data memoryZCPLA [m]Complement data memory with result in ACCZIncrement and DecrementZINC [m]Increment data memory with result in ACCZDEC [m]Decrement data memory with result in ACCZDEC [m]Decrement data memory with result in ACCZRotateZZRotateZZRotateZZRCA [m]Rotate data memory right with result in ACCNoneRRCA [m]Rotate data memory right through carry with result in ACCCRRCA [m]Rotate data memory right through carry with result in ACCCRRCA [m]Rotate data memory right through carry with result in ACCCRRCA [m]Rotate data memory right through carry with result in ACCNoneRL [m]Rotate data memory right through carry with result in ACCNoneRL [m]Rotate data memory left through carry with result in ACCNoneRL [m]Rotate data memory left through carry with result in ACCNone<	Logic Operation		
OR A,[m]OR data memory to ACCZXOR A,[m]Exclusive-OR data memory to ACCZANDM A,[m]AND ACC to data memoryZORM A,[m]OR ACC to data memoryZXOR M,[m]OR ACC to data memoryZXORM A,[m]Exclusive-OR ACC to data memoryZAND A,xAND immediate data to ACCZOR A,xOR immediate data to ACCZXOR A,xExclusive-OR immediate data to ACCZCPL [m]Complement data memoryZCPLA [m]Complement data memory with result in ACCZIncrement and DecrementZINCA [m]Increment data memory with result in ACCZDEC [m]Decrement data memory with result in ACCZDEC [m]Decrement data memory with result in ACCZRotateZZRotateZZRotateZZRCA [m]Rotate data memory right with result in ACCNoneRRCA [m]Rotate data memory right through carry with result in ACCCRRCA [m]Rotate data memory right through carry with result in ACCCRRCA [m]Rotate data memory right with result in ACCCRRCA [m]Rotate data memory right through carry with result in ACCCRL [m]Rotate data memory right through carry with result in ACCNoneRL [m]Rotate data memory right through carry with result in ACCNoneRL [m]Rotate data memory right through carry with result in ACCNoneRL [m]	AND A,[m]	AND data memory to ACC	Z
XOR A,[m]Exclusive-OR data memory to ACCZANDM A,[m]AND ACC to data memoryZORM A,[m]OR ACC to data memoryZXOR M,[m]Exclusive-OR ACC to data memoryZAND A,xAND immediate data to ACCZOR A,xOR immediate data to ACCZOR A,xComplement data memoryZCPL [m]Complement data memoryZCPLA [m]Complement data memory with result in ACCZINCA [m]Increment data memory with result in ACCZDECA [m]DecrementZDECA [m]Decrement data memory with result in ACCZRotateZZRotateZZRotateZZRotateCZRCA [m]Rotate data memory right with result in ACCNoneRRC [m]Rotate data memory right with result in ACCCRRA [m]Rotate data memory right with result in ACCCRRA [m]Rotate data memory right with result in ACCCRRC [m]Rotate data memory right through carryCRLA [m]Rotate data memory right through carryCRLA [m]Rotate data memory right through carryCRLA [m]Rotate data memory right through carryNoneRL [m]Rotate data memory right through carry with result in ACCNoneRLA [m]Rotate data memory right through carryNoneRL [m]Rotate data memory right through carry with result in ACCNone			Z
ORM A,[m]OR ACC to data memoryZXORM A,[m]Exclusive-OR ACC to data memoryZAND A,xAND immediate data to ACCZOR A,xOR immediate data to ACCZOR A,xExclusive-OR immediate data to ACCZCPL [m]Complement data memoryZCPLA [m]Complement data memory with result in ACCZIncrement and DecrementINCA [m]Increment data memory with result in ACCZINC [m]Increment data memoryZDECA [m]Decrement data memory with result in ACCZDECA [m]Decrement data memory with result in ACCZDECA [m]Decrement data memory with result in ACCZDECA [m]Decrement data memory with result in ACCZDEC [m]Decrement data memory right with result in ACCZRRA [m]Rotate data memory right with result in ACCCRRC [m]Rotate data memory right through carry with result in ACCCRRC [m]Rotate data memory right through carryCRLA [m]Rotate data memory right through carryCRLA [m]Rotate data memory left with result in ACCNoneRL [m]Rotate data memory right through carryCRL [m]Rotate data memory right through carryNoneRL [m]Rotate data memory left with result in ACCNoneRL [m]Rotate data memory left with result in ACCNoneRL [m]Rotate data memory leftNoneRLCA [m]Rotate data memory			Z
ORM A,[m]OR ACC to data memoryZXORM A,[m]Exclusive-OR ACC to data memoryZAND A,xAND immediate data to ACCZOR A,xOR immediate data to ACCZQR A,xExclusive-OR immediate data to ACCZCPL [m]Complement data memoryZCPLA [m]Complement data memory with result in ACCZIncrement and DecrementINCA [m]Increment data memory with result in ACCZINC [m]Increment data memory with result in ACCZDECA [m]Decrement data memory with result in ACCZDECA [m]Decrement data memory with result in ACCZDEC [m]Decrement data memory with result in ACCZDEC [m]Decrement data memory with result in ACCZDEC [m]Decrement data memory right with result in ACCZRRA [m]Rotate data memory right with result in ACCCRRA [m]Rotate data memory right through carry with result in ACCCRRCA [m]Rotate data memory right through carryCRLA [m]Rotate data memory right through carryCRLA [m]Rotate data memory right with result in ACCNoneRL [m]Rotate data memory right through carryCRLA [m]Rotate data memory right through carryCRLA [m]Rotate data memory left with result in ACCNoneRL [m]Rotate data memory right through carry with result in ACCNone			Z
XORM A,[m]Exclusive-OR ACC to data memoryZAND A,xAND immediate data to ACCZOR A,xOR immediate data to ACCZCR A,xExclusive-OR immediate data to ACCZCPL [m]Complement data memoryZCPLA [m]Complement data memory with result in ACCZIncrement and DecrementZINCA [m]Increment data memory with result in ACCZINC [m]Increment data memory with result in ACCZDECA [m]Decrement data memory with result in ACCZDEC [m]Decrement data memory with result in ACCZDEC [m]Decrement data memory with result in ACCZRRA [m]Rotate data memory right with result in ACCNoneRRA [m]Rotate data memory right with result in ACCCRRA [m]Rotate data memory right through carry with result in ACCCRRCA [m]Rotate data memory right through carry with result in ACCCRRCA [m]Rotate data memory right through carry with result in ACCCRRCA [m]Rotate data memory right through carry with result in ACCCRRCA [m]Rotate data memory right through carry with result in ACCCRLA [m]Rotate data memory right through carry with result in ACCNoneRLA [m]Rotate data memory right through carry with result in ACCNoneRLA [m]Rotate data memory left with result in ACCNoneRLCA [m]Rotate data memory left through carry with result in ACCC	·		Z
AND A,xAND immediate data to ACCZOR A,xOR immediate data to ACCZXOR A,xExclusive-OR immediate data to ACCZCPL [m]Complement data memoryZCPLA [m]Complement data memory with result in ACCZIncrement and DecrementZINCA [m]Increment data memory with result in ACCZINC [m]Increment data memory with result in ACCZDECA [m]Decrement data memory with result in ACCZDEC [m]Decrement data memory with result in ACCZDEC [m]Decrement data memoryZBet and the data memory right mesult in ACCZRRA [m]Rotate data memory right with result in ACCNoneRRCA [m]Rotate data memory right through carry with result in ACCCRRCA [m]Rotate data memory right through carryCRLA [m]Rotate data memory left with result in ACCNoneRL [m]Rotate data memory left with result in ACCNoneRLA [m]Rotate data memory left with result in ACCNoneRL [m]Rotate data memory left through carry with result in ACCC	-		Z
OR A,xOR immediate data to ACCZXOR A,xExclusive-OR immediate data to ACCZCPL [m]Complement data memoryZCPLA [m]Complement data memory with result in ACCZIncrement and DecrementZINCA [m]Increment data memory with result in ACCZINC [m]Increment data memory with result in ACCZDECA [m]Decrement data memory with result in ACCZDECA [m]Decrement data memory with result in ACCZDEC [m]Decrement data memory with result in ACCZRet mathematicate data memory with result in ACCZRet mathematicate data memory right with result in ACCNoneRRA [m]Rotate data memory right with result in ACCCRRA [m]Rotate data memory right through carry with result in ACCCRRCA [m]Rotate data memory right through carry with result in ACCCRRCA [m]Rotate data memory right through carry with result in ACCCRRCA [m]Rotate data memory right through carry with result in ACCCRRCA [m]Rotate data memory right through carry with result in ACCNoneRLA [m]Rotate data memory left with result in ACCNoneRL [m]Rotate data memory left through carry with result in ACCNoneRL [m]Rotate data memory left through carry with result in ACCC	·		Z
XOR A,xExclusive-OR immediate data to ACCZCPL [m]Complement data memoryZCPLA [m]Complement data memory with result in ACCZIncrement and DecrementZINCA [m]Increment data memory with result in ACCZINC [m]Increment data memoryZDECA [m]Decrement data memory with result in ACCZDEC [m]Decrement data memory with result in ACCZDEC [m]Decrement data memoryZRet matched at a memory with result in ACCZRet matched at a memory with result in ACCZDEC [m]Decrement data memory right with result in ACCNoneRRA [m]Rotate data memory right with result in ACCCRRCA [m]Rotate data memory right through carry with result in ACCCRRCA [m]Rotate data memory right through carryCRLA [m]Rotate data memory right with result in ACCNoneRLA [m]Rotate data memory left with result in ACCNoneRL [m]Rotate data memory left with result in ACCNoneRL [m]Rotate data memory left through carry with result in ACCNoneRL [m]Rotate data memory left through carry with result in ACCC		OR immediate data to ACC	Z
CPL [m]Complement data memoryZCPLA [m]Complement data memory with result in ACCZIncrement and DecrementIncrement data memory with result in ACCZINC [m]Increment data memory with result in ACCZDECA [m]Decrement data memory with result in ACCZDEC [m]Decrement data memory with result in ACCZDEC [m]Decrement data memoryZRotateZRRA [m]Rotate data memory right with result in ACCNoneRR [m]Rotate data memory right with result in ACCCRRCA [m]Rotate data memory right through carry with result in ACCCRRCA [m]Rotate data memory right through carryCRLA [m]Rotate data memory left with result in ACCNoneRLA [m]Rotate data memory left through carry with result in ACCNoneRLA [m]Rotate data memory left through carry with result in ACCNoneRLA [m]Rotate data memory left with result in ACCNoneRL [m]Rotate data memory left through carry with result in ACCNoneRL [m]Rotate data memory left through carry with result in ACCC		Exclusive-OR immediate data to ACC	Z
CPLA [m]Complement data memory with result in ACCZIncrement and DecrementIncrement data memory with result in ACCZINC [m]Increment data memory with result in ACCZINC [m]Increment data memoryZDECA [m]Decrement data memory with result in ACCZDEC [m]Decrement data memoryZRotateZRRA [m]Rotate data memory right with result in ACCNoneRR [m]Rotate data memory right with result in ACCCRRCA [m]Rotate data memory right through carry with result in ACCCRRC [m]Rotate data memory right through carryCRLA [m]Rotate data memory left with result in ACCNoneRLA [m]Rotate data memory right through carryCRLA [m]Rotate data memory left through carry with result in ACCNoneRLA [m]Rotate data memory left with result in ACCNoneRL [m]Rotate data memory left through carry with result in ACCC			Z
INCA [m]Increment data memory with result in ACCZINC [m]Increment data memoryZDECA [m]Decrement data memory with result in ACCZDEC [m]Decrement data memoryZRotateRRA [m]Rotate data memory right with result in ACCNoneRRA [m]Rotate data memory right with result in ACCNoneRRCA [m]Rotate data memory rightNoneRRCA [m]Rotate data memory right through carry with result in ACCCRRC [m]Rotate data memory right through carryCRLA [m]Rotate data memory left with result in ACCNoneRL [m]Rotate data memory leftNoneRLCA [m]Rotate data memory left through carry with result in ACCC			Z
INCA [III]Inferement data memory with result in ACCZINC [m]Increment data memoryZDECA [m]Decrement data memory with result in ACCZDEC [m]Decrement data memoryZRotateZRRA [m]Rotate data memory right with result in ACCNoneRR [m]Rotate data memory rightNoneRRCA [m]Rotate data memory right through carry with result in ACCCRRC [m]Rotate data memory right through carryCRRL [m]Rotate data memory left with result in ACCNoneRLA [m]Rotate data memory left with result in ACCNoneRL [m]Rotate data memory leftNoneRLCA [m]Rotate data memory left through carry with result in ACCC	Increment and D	lecrement	
INC [m]Increment data memoryZDECA [m]Decrement data memory with result in ACCZDEC [m]Decrement data memoryZRotateZRRA [m]Rotate data memory right with result in ACCNoneRR [m]Rotate data memory rightNoneRRCA [m]Rotate data memory right through carry with result in ACCCRRC [m]Rotate data memory right through carry with result in ACCCRRC [m]Rotate data memory right through carryCRLA [m]Rotate data memory left with result in ACCNoneRLA [m]Rotate data memory left with result in ACCNoneRLA [m]Rotate data memory leftNoneRLCA [m]Rotate data memory left through carry with result in ACCC	INCA [m]	Increment data memory with result in ACC	Z
DECA [m] DEC [m]Decrement data memory with result in ACC Decrement data memoryZRotateRRA [m] RRA [m]Rotate data memory right with result in ACC Rotate data memory rightNone NoneRRCA [m] RRCA [m]Rotate data memory right through carry with result in ACC C RRC [m] Rotate data memory right through carryC C C C NoneRLA [m] RL [m]Rotate data memory left Rotate data memory left Rotate data memory left Rotate data memory left RLA [m]None C C C C Rotate data memory left Rotate data memory left Rotate data memory left RLA [m]RLA [m] Rotate data memory left Rotate data memory left RLA [m]None R Rotate data memory left Rotate data memory left through carry with result in ACC Rome RLCA [m]			Z
DEC [m]Decrement data memoryZRotateRRA [m]Rotate data memory right with result in ACCNoneRR [m]Rotate data memory rightNoneRRCA [m]Rotate data memory right through carry with result in ACCCRRC [m]Rotate data memory right through carryCRLA [m]Rotate data memory left with result in ACCNoneRLA [m]Rotate data memory left with result in ACCNoneRL [m]Rotate data memory leftNoneRLCA [m]Rotate data memory left through carry with result in ACCC			Z
RotateRRA [m]Rotate data memory right with result in ACCNoneRR [m]Rotate data memory rightNoneRRCA [m]Rotate data memory right through carry with result in ACCCRRC [m]Rotate data memory right through carryCRLA [m]Rotate data memory left with result in ACCNoneRL [m]Rotate data memory leftNoneRLCA [m]Rotate data memory left through carry with result in ACCC			Z
RR [m]Rotate data memory rightNoneRRCA [m]Rotate data memory right through carry with result in ACCCRRC [m]Rotate data memory right through carryCRLA [m]Rotate data memory left with result in ACCNoneRL [m]Rotate data memory leftNoneRLCA [m]Rotate data memory left through carry with result in ACCC	Rotate	, v	
RR [m]Rotate data memory rightNoneRRCA [m]Rotate data memory right through carry with result in ACCCRRC [m]Rotate data memory right through carryCRLA [m]Rotate data memory left with result in ACCNoneRL [m]Rotate data memory leftNoneRLCA [m]Rotate data memory left through carry with result in ACCC	RRA [m]	Rotate data memory right with result in ACC	None
RRCA [m]Rotate data memory right through carry with result in ACCCRRC [m]Rotate data memory right through carryCRLA [m]Rotate data memory left with result in ACCNoneRL [m]Rotate data memory leftNoneRLCA [m]Rotate data memory left through carry with result in ACCC			
RRC [m]Rotate data memory right through carryCRLA [m]Rotate data memory left with result in ACCNoneRL [m]Rotate data memory leftNoneRLCA [m]Rotate data memory left through carry with result in ACCC			
RLA [m]Rotate data memory left with result in ACCNoneRL [m]Rotate data memory leftNoneRLCA [m]Rotate data memory left through carry with result in ACCC			-
RL [m]Rotate data memory leftNoneRLCA [m]Rotate data memory left through carry with result in ACCC			
RLCA [m] Rotate data memory left through carry with result in ACC C			
RLC m Kotate data memory left through carry C	RLC [m]	Rotate data memory left through carry	\ddot{c}

November 17, 1999

Mnemonic	Description	Flag Affected				
Data Move						
MOV A,[m]	Move data memory to ACC	None				
MOV [m],A	Move ACC to data memory	None				
MOV A,x	Move immediate data to ACC	None				
Bit Operation						
CLR [m].i	Clear bit of data memory	None				
SET [m].i	Set bit of data memory	None				
Branch						
JMP addr	Jump unconditional	None				
SZ [m]	Skip if data memory is zero	None				
SZA [m]	Skip if data memory is zero with data movement to ACC	None				
SZ [m].i	Skip if bit i of data memory is zero	None				
SNZ [m].i	Skip if bit i of data memory is not zero	None				
SIZ [m]	Skip if increment data memory is zero	None				
SDZ [m]	Skip if decrement data memory is zero	None				
SIZA [m]	Skip if increment data memory is zero with result in ACC	None				
SDZA [m]	Skip if decrement data memory is zero with result in ACC	None				
CALL addr	Subroutine call	None				
RET	Return from subroutine	None				
RET A,x	Return from subroutine and load immediate data to ACC	None				
RETI	Return from interrupt	None				
Table Read	Table Read					
TABRDC [m]	Read ROM code (current page) to data memory and TBLH	None				
TABRDL [m]	Read ROM code (last page) to data memory and TBLH	None				
Miscellaneous						
NOP	No operation	None				
CLR [m]	Clear data memory	None				
SET [m]	Set data memory	None				
CLR WDT	Clear the watchdog timer	TO,PD				
CLR WDT1	Pre-clear the watchdog timer	TO*,PD*				
CLR WDT2	Pre-clear the watchdog timer	TO*,PD*				
SWAP [m]	Swap nibbles of data memory	None				
SWAPA [m]	Swap nibbles of data memory with result in ACC	None				
HALT	Enter power down mode	TO,PD				

Note: x: 8-bit immediate data

m: 8-bit data memory address

- A: accumulator
- i: 0~7 number of bits

- addr: 12-bit program memory address
- $\sqrt{1}$: Flag(s) is affected
- -: Flag(s) is not affected
- $\ast:\ Flag(s)$ may be affected by the execution status
- 27

Instruction Definition

ADC A,[m]	Add data memory and carry to accumulator
Description	The contents of the specified data memory, accur are added simultaneously, leaving the result in th
Operation	$ACC \leftarrow ACC+[m]+C$
$Affected \ flag(s)$	
	TC2 TC1 TO PD OV Z AC C
ADCM A,[m]	Add accumulator and carry to data memory
Description	The contents of the specified data memory, accur
Operation	are added simultaneously, leaving the result in th [m] ← ACC+[m]+C
Affected flag(s)	
	TC2 TC1 TO PD OV Z AC C
ADD A,[m]	Add data memory to accumulator
Description	The contents of the specified data memory and the The result is stored in the accumulator.
Operation	$ACC \leftarrow ACC+[m]$
Affected flag(s)	
	TC2 TC1 TO PD OV Z AC C
ADD A,x	Add immediate data to accumulator
ADD A,x Description	
	Add immediate data to accumulator The contents of the accumulator and the specific
Description	Add immediate data to accumulator The contents of the accumulator and the specific the result in the accumulator.
Description Operation	Add immediate data to accumulator The contents of the accumulator and the specific the result in the accumulator.

November 17, 1999

ADDM A,[m]	Add accum	ulator to	data 1	nemor	у		
Description	The conten The result i		-			•	nd the
Operation	$[m] \leftarrow ACC$	+[m]					
$Affected \ flag(s)$							
	TC2 TC	TO I	PD	OV	Z	AC	С
			_	\checkmark	\checkmark	\checkmark	\checkmark
AND A,[m]	Logical AN	D accum	nulator	with o	lata m	emory	
Description	Data in the logical_AN						
Operation	$ACC \leftarrow AC$	C AND	[m]				
$Affected \ flag(s)$							
	TC2 TC	TO I	PD	OV	Z	AC	С
			_	_	\checkmark	_	
AND A,x	Logical AN	D imme	diate d	ata to	accum	ulator	
Description	Data in the cal_AND op						
Operation	$ACC \leftarrow AC$	C AND	x				
Affected $flag(s)$							
	TC2 TC	TO I	PD	OV	Z	AC	С
		_			\checkmark	_	
ANDM A,[m]	Logical AN	D data r	nemor	y with	accum	ulator	
Description	Data in the						
	logical_AN) operat	tion. Tl	ne resu	lt is st	tored in	n the c
Operation	$[m] \leftarrow ACC$	AND [[m]				
$Affected \ flag(s)$							
	TC2 TC	TO I	PD	OV	Z	AC	С
				_	\checkmark	_	

CALL addr Description	Subroutine call The instruction unconditionally calls a subroutine located at the indicated address. The program counter increments once to obtain the address of the next instruction, and pushes this onto the stack. The indicated address is then loaded. Program execution continues with the instruction at this ad- dress.		
Operation	Stack \leftarrow PC+1 PC \leftarrow addr		
$Affected \ flag(s)$			
	TC2 TC1 TO PD OV Z AC C		
CLR [m]	Clear data memory		
Description	The contents of the specified data memory are cleared to zero.		
Operation	$[m] \leftarrow 00H$		
$Affected \ flag(s)$			
	TC2 TC1 TO PD OV Z AC C		
CLR [m].i	Clear bit of data memory		
Description	The bit i of the specified data memory is cleared to zero.		
Operation	$[m].i \leftarrow 0$		
Affected flag(s)			
	TC2 TC1 TO PD OV Z AC C		
CLR WDT	Clear the watchdog timer		
Description	The WDT and the WDT Prescaler are cleared (re-counting from zero). The power down bit (PD) and time-out bit (TO) are cleared.		
Operation	WDT and WDT Prescaler $\leftarrow 00H$ PD and TO $\leftarrow 0$		
Affected flag(s)			
	TC2 TC1 TO PD OV Z AC C		
	0 0		

CLR WDT1	Preclear the watchdog timer		
Description	The PD, TO flags, WDT and the WDT Prescaler are cleared (re-counting from zero), if the other preclear WDT instruction had been executed. Only execution of this instruction without the other preclear instruction just sets the indicating flag which implies that this instruction was executed and the PD and TO flags remain unchanged.		
Operation	WDT and WDT Prescaler $\leftarrow 00H^*$ PD and TO $\leftarrow 0^*$		
Affected flag(s)			
	TC2 TC1 TO PD OV Z AC C		
	0* 0*		
CLR WDT2	Preclear the watchdog timer		
Description	The PD and TO flags, WDT and the WDT Prescaler are cleared (re-counting from zero), if the other preclear WDT instruction had been executed. Only execution of this instruction without the other preclear instruction, sets the indicating flag which implies that this instruction was executed and the PD and TO flags remain unchanged.		
Operation	WDT and WDT Prescaler $\leftarrow 00H^*$ PD and TO $\leftarrow 0^*$		
Affected flag(s)			
	TC2 TC1 TO PD OV Z AC C		
	O* O*		
CPL [m]	Complement data memory		
Description	Each bit of the specified data memory is logically complemented (1 s complement). Bits which previously contain a one are changed to zero and vice-versa.		
Operation	$[m] \leftarrow [\overline{m}]$		
$Affected \ flag(s)$			
	TC2 TC1 TO PD OV Z AC C		

HOLTEK	С НТ99С410/НТ99С411	
CPLA [m]	Complement data memory and place result in accumulator	
Description	Each bit of the specified data memory is logically complemented (1's comple- ment). Bits which previously contained a one are changed to zero and vice-versa. The complemented result is stored in the accumulator and the contents of the data memory remain unchanged.	
Operation	$ACC \leftarrow [\overline{m}]$	
Affected flag(s)		
	TC2 TC1 TO PD OV Z AC C $ $ $ -$	
DAA [m]	Decimal-Adjust the accumulator for addition	
Description	The accumulator value is adjusted to the BCD (Binary Code Decimal) code. The accumulator is divided into two nibbles. Each nibble is adjusted to the BCD code and an internal carry (AC1) will be done if the low nibble of the ac- cumulator is greater than 9. The BCD adjustment is done by adding 6 to the original value if the original value is greater than 9 or a carry (AC or C) is set; otherwise the original value remains unchanged. The result is stored in the data memory and only the carry flag (C) may be affected.	
Operation	If $(ACC.3 \sim ACC.0) > 9$ or $AC=1$ then $([m].3 \sim [m].0) \leftarrow (ACC.3 \sim ACC.0)+6$, $AC1=\overline{AC}$ else $([m].3 \sim [m].0) \leftarrow (ACC.3 \sim ACC.0)$, $AC1=0$ If $(ACC.7 \sim ACC.4)+AC1 > 9$ or $C=1$ then $([m].7 \sim [m].4) \leftarrow (ACC.7 \sim ACC.4)+6+AC1$, $C=1$ else $([m].7 \sim [m].4) \leftarrow (ACC.7 \sim ACC.4)+AC1$, $C=C$	
Affected flag(s)		
	TC2 TC1 TO PD OV Z AC C $ $	
DEC [m]	Decrement data memory	
Description	Data in the specified data memory is decremented by one.	
Operation Affected flag(s)	[m] ← [m] 1	
	TC2 TC1 TO PD OV Z AC C $ $ $ -$	

	НТ99С410/НТ99С411
DECA [m]	Decrement data memory and place result in accumulator
Description	Data in the specified data memory is decremented by one, leaving the result in the accumulator. The contents of the data memory remain unchanged.
Operation Affected flag(s)	$ACC \leftarrow [m] 1$
	TC2 TC1 TO PD OV Z AC C
HALT	Enter power down mode
Description	This instruction stops the program execution and turns off the system clock. The contents of the RAM and registers are retained. The WDT and prescaler are cleared. The power down bit (PD) is set and the WDT time-out bit (TO) is cleared.
Operation	$PC \leftarrow PC+1$ $PD \leftarrow 1$ $TO \leftarrow 0$
Affected flag(s)	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
INC [m]	Increment data memory
Description	Data in the specified data memory is incremented by one.
Operation Affected flag(s)	$[m] \leftarrow [m]+1$
Affected flag(s)	TC2 TC1 TO PD OV Z AC C
	$ \sqrt{-} -$
INCA [m]	Increment data memory and place result in accumulator
Description	Data in the specified data memory is incremented by one, leaving the result in the accumulator. The contents of the data memory remain unchanged.
Operation	ACC \leftarrow [m]+1
Affected flag(s)	
	TC2 TC1 TO PD OV Z AC C

		HIS
JMP addr	Direct Jump	
Description	Bits 0~11 of the program counter are replaced	
	dress unconditionally, and control passed to th	his des
Operation	$\text{PC} \leftarrow \text{addr}$	
Affected $flag(s)$		
	TC2 TC1 TO PD OV Z AC	С
MOV A,[m]	Move data memory to accumulator	
Description	The contents of the specified data memory is c	copied
Operation	$ACC \leftarrow [m]$	
Affected flag(s)		
	TC2 TC1 TO PD OV Z AC	С
MOV A,x	Move immediate data to accumulator	
Description	The 8 bit data specified by the code is loaded i	into th
Operation	$ACC \leftarrow x$	
Affected flag(s)		
	TC2 TC1 TO PD OV Z AC	С
MOV [m],A	Move accumulator to data memory	
Description	The contents of the accumulator is copied to the	he spe
	of the data memory).	
Operation	$[m] \leftarrow ACC$	
Affected flag(s)		
	TC2 TC1 TO PD OV Z AC	С
NOP	No operation	
Description	No operation is performed. Execution continue	es wit
Operation	$PC \leftarrow PC+1$	
$Affected \ flag(s)$		
	TC2 TC1 TO PD OV Z AC	С

34

HOLTEK	НТ99С410/НТ99С
OR A,[m]	Logical OR accumulator with data memory
Description	Data in the accumulator and the specified data memory (one of the memory) performs a bitwise logical_OR operation. The result is stored is accumulator.
Operation Affected flag(s)	$ACC \leftarrow ACC OR [m]$
Allected flag(s)	TC2 TC1 TO PD OV Z AC C - - - - \checkmark - - -
OR A,x	Logical OR immediate data to accumulator
Description	Data in the accumulator and the specified data performs a bitwise cal_OR operation. The result is stored in the accumulator.
Operation Affected flag(s)	$ACC \leftarrow ACC \text{ OR } \mathbf{x}$
	TC2 TC1 TO PD OV Z AC C
ORM A,[m]	Logical OR data memory with accumulator
Description	Data in the data memory (one of the data memory) and the accumulator forms a bitwise logical_OR operation. The result is stored in the data n ory.
Operation	$[m] \leftarrow ACC OR [m]$
$Affected \ flag(s)$	
	TC2 TC1 TO PD OV Z AC C
RET	Return from subroutine
Description	The program counter is restored from the stack. This is a two cycle inst tion.
Operation	$PC \leftarrow Stack$
$Affected \ flag(s)$	
	TC2 TC1 TO PD OV Z AC C

RET A,x	Return and place immediate data in accumulator		
Description	The program counter is restored from the stack and the accumulat with the specified 8-bit immediate data.		
Operation	$\begin{array}{l} \text{PC} \leftarrow \text{Stack} \\ \text{ACC} \leftarrow \text{x} \end{array}$		
Affected flag(s)			
	TC2 TC1 TO PD OV Z AC C		
RETI	Return from interrupt		
Description	The program counter is restored from the stack, and the interrup abled by setting the EMI bit. EMI is the enable master (global) inter- (bit 0, register INTC)		
Operation	(bit 0; register INTC). PC ← Stack		
Operation	$FC \leftarrow Stack$ EMI $\leftarrow 1$		
Affected flag(s)			
5	TC2 TC1 TO PD OV Z AC C		
RL [m]	Rotate data memory left		
Description	The contents of the specified data memory is rotated left, one bit with tated into bit 0.		
Operation	[m].(i+1) ← [m].i; [m].i:bit i of the data memory (i=0~6) [m].0 ← [m].7		
Affected flag(s)			
	TC2 TC1 TO PD OV Z AC C		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
RLA [m]	TC2 TC1 TO PD OV Z AC C — — — — — — — — — Rotate data memory left and place result in accumulator		
RLA [m] Description	Rotate data memory left and place result in accumulator Data in the specified data memory is rotated left, one bit with bit into bit 0, leaving the rotated result in the accumulator. The content		
Description Operation	Rotate data memory left and place result in accumulator Data in the specified data memory is rotated left, one bit with bit into bit 0, leaving the rotated result in the accumulator. The contendata memory remain unchanged.		
Description	Both for the last of t		
Description Operation			

RLC [m]	Potato data mamany left through commy	
Description	Rotate data memory left through carry The contents of the specified data memory and the carry flag are together ro- tated left one bit. Bit 7 replaces the carry bit; the original carry flag is rotated into the bit 0 position.	
Operation	[m].(i+1) \leftarrow [m].i; [m].i:bit i of the data memory (i=0~6) [m].0 \leftarrow C C \leftarrow [m].7	
Affected flag(s)		
	TC2 TC1 TO PD OV Z AC C	
RLCA [m]	Rotate left through carry and place result in accumulator	
Description	Data in the specified data memory and the carry flag are together rotated left one bit. Bit 7 replaces the carry bit and the original carry flag is rotated into bit 0 position. The rotated result is stored in the accumulator but the con- tents of the data memory remain unchanged.	
Operation	ACC.(i+1) \leftarrow [m].i; [m].i:bit i of the data memory (i=0~6) ACC.0 \leftarrow C C \leftarrow [m].7	
Affected flag(s)		
	TC2 TC1 TO PD OV Z AC C	
	_	
RR [m]	Rotate data memory right	
Description	The contents of the specified data memory are rotated right one bit with bit 0 rotated to bit 7.	
Operation	$[m].i \leftarrow [m].(i+1); [m].i:bit i of the data memory (i=0~6)$ $[m].7 \leftarrow [m].0$	
Affected flag(s)		
	TC2 TC1 TO PD OV Z AC C - - - - - - - -	

	(
HOLTEK	HOLTEK	

RRA [m]	Rotate right and place result in accumulator
Description	Data in the specified data memory is rotated right one bit with bit 0 rotated into bit 7, leaving the rotated result in the accumulator. The contents of the data memory remain unchanged.
Operation	ACC.(i) \leftarrow [m].(i+1); [m].i:bit i of the data memory (i=0~6) ACC.7 \leftarrow [m].0
Affected $flag(s)$	
	TC2 TC1 TO PD OV Z AC C
RRC [m]	Rotate data memory right through carry
Description	The contents of the specified data memory and the carry flag are together ro- tated right one bit. Bit 0 replaces the carry bit; the original carry flag is ro- tated into the bit 7 position.
Operation	[m].i ← [m].(i+1); [m].i:bit i of the data memory (i=0~6) [m].7 ← C C ← [m].0
Affected flag(s)	
	TC2 TC1 TO PD OV Z AC C
	√
RRCA [m]	Rotate right through carry and place result in accumulator
Description	Data of the specified data memory and the carry flag are together rotated right one bit. Bit 0 replaces the carry bit and the original carry flag is rotated into the bit 7 position. The rotated result is stored in the accumulator. The contents of the data memory remain unchanged.
Operation	ACC.i \leftarrow [m].(i+1); [m].i:bit i of the data memory (i=0~6) ACC.7 \leftarrow C C \leftarrow [m].0
Affected flag(s)	
	TC2 TC1 TO PD OV Z AC C

SBC A,[m]	Subtract data memory and carry from accumulator							
Description	The contents of the specified data memory and the complement of the carry flag are together subtracted from the accumulator, leaving the result in the accumulator.							
Operation	$ACC \leftarrow ACC + [\overline{m}] + C$							
Affected flag(s)								
	TC2 TC1 TO PD OV Z AC C							
SBCM A,[m]	Subtract data memory and carry from accumulator							
Description	The contents of the specified data memory and the complement of the carr flag are together subtracted from the accumulator, leaving the result in th data memory.							
Operation	$[m] \leftarrow ACC + [\overline{m}] + C$							
Affected flag(s)								
	TC2 TC1 TO PD OV Z AC C							
	Skip if decrement data memory is zero							
SDZ [m]	Ship ii deerement data memory is zero							
SDZ [m] Description	The contents of the specified data memory are decremented by one. If the r sult is zero, the next instruction is skipped. If the result is zero, the followin instruction, fetched during the current instruction execution, is discarded and a dummy cycle replaced to get the proper instruction. This makes a 2 cy cle instruction. Otherwise proceed with the next instruction.							
	The contents of the specified data memory are decremented by one. If the r sult is zero, the next instruction is skipped. If the result is zero, the followin instruction, fetched during the current instruction execution, is discarded and a dummy cycle replaced to get the proper instruction. This makes a 2 c							
Description	The contents of the specified data memory are decremented by one. If the r sult is zero, the next instruction is skipped. If the result is zero, the followi instruction, fetched during the current instruction execution, is discard and a dummy cycle replaced to get the proper instruction. This makes a 2 of cle instruction. Otherwise proceed with the next instruction.							

SDZA [m]	Decrement data memory and place result in ACC, skip if zero
Description	The contents of the specified data memory are decremented by one. If the re- sult is zero, the next instruction is skipped. The result is stored in the accu- mulator but the data memory remains unchanged. If the result is zero, the following instruction, fetched during the current instruction execution, is discarded and a dummy cycle is replaced to get the proper instruction, that makes a 2 cycle instruction. Otherwise proceed to the next instruction.
Operation	Skip if ([m] 1)=0, ACC \leftarrow ([m] 1)
Affected flag(s)	
	TC2 TC1 TO PD OV Z AC C
SET [m]	Set data memory
Description	Each bit of the specified data memory is set to one.
Operation	$[m] \leftarrow FFH$
Affected $flag(s)$	
	TC2 TC1 TO PD OV Z AC C
SET [m].i	Set bit of data memory
Description	Bit i of the specified data memory is set to one.
Operation	$[m].i \leftarrow 1$
Affected flag(s)	
	TC2 TC1 TO PD OV Z AC C
SIZ [m]	Skip if increment data memory is zero
Description	The contents of the specified data memory is incremented by one. If the re- sult is zero, the following instruction, fetched during the current instruction execution, is discarded and a dummy cycle is replaced to get the proper in- struction. This is a 2-cycle instruction. Otherwise proceed to the next in- struction.
Operation	Skip if $([m]+1)=0$, $[m] \leftarrow ([m]+1)$
Affected $flag(s)$	
	TC2 TC1 TO PD OV Z AC C

40

SIZA [m]	Increment data memory and place result in ACC, skip if zero
Description	The contents of the specified data memory is incremented by one. If the re- sult is zero, the next instruction is skipped and the result stored in the accu- mulator. The data memory remains unchanged. If the result is zero, the following instruction, fetched during the current instruction execution, is discarded and a dummy cycle replaced to get the proper instruction. This is a 2-cycle instruction. Otherwise proceed to the next instruction.
Operation	Skip if ([m]+1)=0, ACC \leftarrow ([m]+1)
$Affected \ flag(s)$	
	TC2 TC1 TO PD OV Z AC C - - - - - - - -
SNZ [m].i	Skip if bit i of the data memory is not zero
Description	If bit i of the specified data memory is not zero, the next instruction is skipped. If bit i of the data memory is not zero, the following instruction fetched during the current instruction execution, is discarded and a dummy cycle is replaced to get the proper instruction. This is a 2-cycle instruction Otherwise proceed to the next instruction.
Operation	Skip if [m].i≠0
Affected flag(s)	
	TC2 TC1 TO PD OV Z AC C
SUB A,[m]	Subtract data memory from accumulator
Description	The specified data memory is subtracted from the contents of the accumula tor, leaving the result in the accumulator.
Operation	$ACC \leftarrow ACC + [\overline{m}] + 1$
Affected flag(s)	
	TC2 TC1 TO PD OV Z AC C
	TC2TC1TOPDOVZACC \checkmark \checkmark \checkmark \checkmark \checkmark
SUBM A,[m]	
SUBM A,[m] Description	
	Image: Image with the systemImage with the system
Description	$\sqrt{1}$ $\sqrt{1}$ Subtract data memory from accumulatorThe specified data memory is subtracted from the contents of the accumulator, leaving the result in the data memory.
Description Operation	$\sqrt{1}$ $\sqrt{1}$ Subtract data memory from accumulatorThe specified data memory is subtracted from the contents of the accumulator, leaving the result in the data memory.

DescriptionThe immediate the accumOperation $ACC \leftarrow AC$ Affected flag(s) $\boxed{TC2 TC}$ $$ $$ SWAP [m]Swap nibbDescriptionThe low-or the data mOperation[m].3~[m].Affected flag(s) $\boxed{TC2 TC}$ $$ SWAPA [m]Swap data DescriptionDescriptionThe low-or changed, we memory reOperationACC.3~AC ACC.7~ACAffected flag(s) $\boxed{TC2 TC}$ $$ SZ [m]Skip if dat fetched du cycle is rep OtherwiseOperationSkip if flag(s)	nmedia	Subtrac	e data :	from a	ccumu	lator			
Affected flag(s) $TC2 TC$ $-$ SWAP [m]Swap nibbDescriptionThe low-or the data mOperation[m].3~[m].Affected flag(s) $TC2 TC$ $-$ SWAPA [m]Swap data DescriptionDescriptionThe low-or changed, memory re OperationOperationACC.3~AC ACC.7~ACAffected flag(s) $TC2 TC$ $-$ SZ [m]Skip if data DescriptionDescriptionIf the conta fetched du cycle is re OtherwiseOperationSkip if flag									ne conten
TC2TC \square \square SWAP [m]Swap nibbDescriptionThe low-or the data mOperation[m].3~[m].Affected flag(s) $\boxed{TC2}$ $TC2$ \boxed{TC} \square \square SWAPA [m]Swap data DescriptionDescriptionThe low-or changed, memory reOperationACC.3~AC ACC.7~ACAffected flag(s) $\boxed{TC2}$ $TC2$ \boxed{TC} \square \square SZ [m]Skip if dat DescriptionDescriptionIf the conta fetched du cycle is re OtherwiseOperationSkip if [m]	C+x+1	$\text{ACC} \leftarrow$							
SWAP [m]Swap nibbDescriptionThe low-or the data mOperation[m].3~[m].Affected flag(s) $TC2 TC$ \blacksquare \blacksquare SWAPA [m]Swap dataDescriptionThe low-or changed, w memory reOperationACC.3~ACAffected flag(s) $TC2 TC$ \blacksquare \blacksquare SZ [m]Skip if datDescriptionIf the conta fetched du cycle is rej OtherwiseOperationSkip if [m]									
Description The low-or the data m Operation [m].3~[m]. Affected flag(s) TC2 TO	1 TO	TC2	PD	OV	Z	AC	С		
Description The low-or the data m Operation [m].3~[m]. Affected flag(s) TC2 TO			_	\checkmark	\checkmark	\checkmark	\checkmark		
the data m Operation $[m].3\sim[m].$ Affected flag(s) TC2 TC - - SWAPA [m] Swap data Description The low-or changed, w memory re Operation ACC.3~AC ACC.7~AC Affected flag(s) TC2 TC - - SZ [m] Skip if dat Description If the conta fetched du cycle is rep Otherwise Operation Skip if [m]	les with	Swap ni	n the d	ata me	emory				
Affected flag(s) TC2 TC SWAPA [m] Swap data Description The low-or Changed, v memory re Operation ACC.3~AC Affected flag(s) TC2 SZ [m] Skip if dat Description If the conta fetched du cycle is re Operation Skip if [m]						of the	specifi	ed data me	emory (on
TC2 TC	$0 \leftrightarrow [m]$	[m].3~[r	7~[m].4	4					
SWAPA [m] Swap data Description The low-or Coperation ACC.3~AC Affected flag(s) TC2 TC SZ [m] Skip if dat Description If the conta fetched du cycle is rej Operation Skip if [m]									
Description The low-or changed, y memory re Operation ACC.3~AC Affected flag(s) TC2 TC 	1 TO	TC2	PD	OV	Z	AC	С		
Description The low-or changed, y memory re Operation ACC.3~AC Affected flag(s) TC2 TC 									
Description The low-or changed, y memory re Operation ACC.3~AC Affected flag(s) TC2 TC 									
changed, weight of the second seco	memor	Swap da	and p	ace re	sult in	accun	nulator		
ACC.7~AC Affected flag(s) TC2 TC SZ [m] Skip if dat Description If the conta fetched du cycle is rep Otherwise Operation Skip if [m]	vriting	changed	he resu	ult to t					
TC2 TC									
SZ [m] Skip if dat Description If the content fetched du cycle is rep Otherwise Operation Skip if [m]									
Description If the content fetched du cycle is rep Otherwise Operation Skip if [m]	1 TO	TC2	PD	OV	Z	AC	С		
Description If the content fetched du cycle is rep Otherwise Operation Skip if [m]		_	_				_		
fetched du cycle is re Otherwise Operation Skip if [m]	a memo	Skip if c	y is zei	:0					
• •	ring the placed to	fetched cycle is	current get the	t instru e prope	uction er inst	execut ruction	ion, is	discarded a	and a dun
Affected flag(s)	=0	Skip if [
TC2 TC	1 TO	TC2	PD	OV	Z	AC	С		
				_	_	_			

	\square
HOLTEK 🏹	

SZA [m]	Move o	lata m	emory	to AC	C, skip	if zero)		
Description	conten structi	ts is zo on exe instru	ero, th cution ction.	e follo , is dis	wing i carded	nstruc and a	tion, f a dumr	etched ny cyc	d to accumulator. If the during the current in- le is replaced to get the therwise proceed to the
Operation	Skip if	[m]=0							
$Affected \ flag(s)$									1
	TC2	TC1	ТО	PD	OV	Z	AC	С	
SZ [m].i	Skip if	bit i of	f the d	ata me	mory i	s zero			
Description	during	the cu	rrent i et the	instruc proper	tion ex instru	ecution.	n, is d	iscard	ving instruction, fetched ed and a dummy cycle is cycle instruction. Other-
Operation	Skip if	[m].i=	0						
$Affected \ flag(s)$									1
	TC2	TC1	TO	PD	OV	Z	AC	С	
			—			—		—	
TABRDC [m]	Move I	ROM co	ode (cu	Irrent j	page) t	o TBL	H and	data r	nemory
Description) is mo	ved to						ed by the table pointer he high byte transferred
Operation	[m] ← TBLH			-					
$Affected \ flag(s)$									_
	TC2	TC1	ТО	PD	OV	Z	AC	С	
TABRDL [m]	Move I	ROM co	ode (la	st page	e) to Tl	3LH a	nd dat	a mem	ory
Description									the table pointer (TBLP) ferred to TBLH directly.
Operation	[m] ← TBLH								
$Affected \ flag(s)$									1
	TC2	TC1	ТО	PD	OV	Z	AC	С	
	_	—		—					

43

HOLTEK	HT99C410/HT99C41							
XOR A,[m]	Logical XOR accumulator with data memory							
Description	Data in the accumulator and the indicated data memory performs a bitwis logical Exclusive_OR operation and the result is stored in the accumulator							
Operation	$ACC \leftarrow ACC "XOR" [m]$							
Affected flag(s)								
	TC2 TC1 TO PD OV Z AC C							
XORM A,[m]	Logical XOR data memory with accumulator							
Description	Data in the indicated data memory and the accumulator perform a bitwise logical Exclusive_OR operation. The result is stored in the data memory. The zero flag is affected.							
Operation	$[m] \leftarrow ACC "XOR" [m]$							
Affected flag(s)								
	TC2 TC1 TO PD OV Z AC C							
XOR A,x	Logical XOR immediate data to accumulator							
Description	Data in the the accumulator and the specified data perform a bitwise logica Exclusive_OR operation. The result is stored in the accumulator. The zer flag is affected.							
Operation	$ACC \leftarrow ACC$ "XOR" x							
Affected flag(s)								
-	TC2 TC1 TO PD OV Z AC C							
	ICZ ICI IO FD OV Z AC C							

Holtek Semiconductor Inc. (Headquarters)

No.3 Creation Rd. II, Science-based Industrial Park, Hsinchu, Taiwan, R.O.C. Tel: 886-3-563-1999 Fax: 886-3-563-1189

Holtek Semiconductor Inc. (Taipei Office)

5F, No.576, Sec.7 Chung Hsiao E. Rd., Taipei, Taiwan, R.O.C. Tel: 886-2-2782-9635 Fax: 886-2-2782-9636 Fax: 886-2-2782-7128 (International sales hotline)

Holtek Semiconductor (Hong Kong) Ltd.

RM.711, Tower 2, Cheung Sha Wan Plaza, 833 Cheung Sha Wan Rd., Kowloon, Hong Kong Tel: 852-2-745-8288 Fax: 852-2-742-8657

Copyright \odot 1999 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.

45