DW9255
35.42MHz SAW Filter for GPS Receivers

The DW9255 SAW filter is no longer made by Zarlink Semiconductor.

DW9255 can now be obtained from Dynex Semiconductor (http://www.dynexsemi.com).

It is believed that the Dynex device conforms to this datasheet, although Zarlink Semiconductor cannot accept responsibility for any differences.

Zarlink now recommends that GPS customers use a Murata SAW Filter, the SAFJA35M4WC0Z00. This device is available from Murata (http://www.murata.com).

Information on how to use the Murata device with the GP2015 can be obtain from the Zarlink Semiconductor website (www.zarlink.com) by downloading Application Brief AB5202 "Using the Murata SAW Filter".
The DW9255 is a Surface Acoustic Wave (SAW) bandpass filter for use with the GP2000 Global Positioning System (GPS) receiver chip-set, available from Mitel Semiconductor. It is pre-tuned to the exact 2nd IF filter requirements of the GP2010 & GP2015 RF front-end devices, with a centre-frequency of 35.42MHz. The response is tuned for a flat passband, steep stopband and uniform passband group-delay with 3 external inductors. The device is realised on a Lithium Tantalate substrate and housed in a small leadless ceramic Surface Mount package.

The DW9255 gives significant improvement in correlated GPS Signal-to-Noise Ratio (SNR) performance compared to conventional LC bandpass filter schemes. This aids satellite signal acquisition and tracking capability from the GP2000 GPS chip-set. This device effectively filters out-of-band (unwanted) noise in the GPS signal. The Automatic Gain Control (AGC) within the GP2010 and GP2015 RF Front-end devices will then operate only on in-band noise for optimum gain and superior correlated GPS signal strength.

FEATURES

- Centre Frequency of 35.42MHz
- Insertion Loss of 17dB ±1dB (typical)
- 1dB Bandwidth 1.9MHz (typical)
- Passband Ripple 0.8dB (typical)
- Low Profile Ceramic Surface Mount Package
- Operating Temperature Range -40° to +85°C

APPLICATION

- Commercial Global Positioning

RELATED PRODUCTS AND PUBLICATIONS

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
<th>Data Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>GP2010</td>
<td>GPS receiver RF Front-end</td>
<td>DS4056</td>
</tr>
<tr>
<td>GP2015</td>
<td>Miniature GPS receiver</td>
<td>DS4374</td>
</tr>
</tbody>
</table>
<pre><code> | RF Front-end | |
</code></pre>

![Fig.1 Pinout](image-url)
ELECTRICAL CHARACTERISTICS (Typ. @ 25°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centre Frequency</td>
<td>-</td>
<td>35.42</td>
<td>-</td>
<td>MHz</td>
</tr>
<tr>
<td>1dB Bandwidth</td>
<td>1.6</td>
<td>1.9</td>
<td>-</td>
<td>MHz</td>
</tr>
<tr>
<td>Insertion Loss</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>dB</td>
</tr>
<tr>
<td>Amplitude Ripple</td>
<td>-</td>
<td>0.8</td>
<td>1.6</td>
<td>dB (pk to pk)</td>
</tr>
<tr>
<td>(34.62 to 36.22MHz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative Attenuation</td>
<td><28MHz</td>
<td>35</td>
<td>40</td>
<td>dB</td>
</tr>
<tr>
<td>(relative to insertion loss)</td>
<td><31MHz</td>
<td>30</td>
<td>35</td>
<td>dB</td>
</tr>
<tr>
<td><33.5MHz</td>
<td>21</td>
<td>25</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>>37.5MHz</td>
<td>21</td>
<td>25</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>>40MHz</td>
<td>25</td>
<td>30</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>>50MHz</td>
<td>30</td>
<td>40</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>>63MHz</td>
<td>28</td>
<td>35</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>>73 - 110MHz</td>
<td>40</td>
<td>45</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>Group Delay Ripple</td>
<td>-</td>
<td>190</td>
<td>300</td>
<td>ns</td>
</tr>
<tr>
<td>(34.62 to 36.22MHz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Group Delay</td>
<td>-</td>
<td>1.6</td>
<td>1.7</td>
<td>µs</td>
</tr>
<tr>
<td>(34.62 to 36.22MHz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>-40</td>
<td>-</td>
<td>+85</td>
<td>°C</td>
</tr>
</tbody>
</table>

Fig. 2 DW9255 used with GPS chipset
DW9255 used as 2nd IF filter for GP2010/15

Centre Frequency 35.42MHz
Pass Band ±1.0MHz (within ±1.0dB)
Insertion loss 14-18dB
3rd IF Image frequency at 2nd IF 26.8MHz
Source Impedance 500Ω typical
Load Impedance 1000Ω typical

The second external IF filter is connected between the output of Stage 2 and input of Stage 3. It is required to define the bandwidth of the RF section of the GPS receiver, hence it is critical to the receiver performance. The filter should be flat across the 2MHz bandwidth of the GPS Coarse-Acquisition (C/A) code signal. It should also have high rejection (greater than 20dB) beyond this bandwidth, and so should have a brick-wall type response at these extremes. The DW9255 SAW filter provides a 1dB Bandwidth of typically 1.9MHz centred on 35.42MHz, with a typical pass band ripple of 0.8dB, when the SAW input and output capacitance is resonantly matched with inductors of optimum value. The out-of-band signal rejection is better than 21dB at ±2.0MHz, and better than 35dB at ±7.5MHz.

The frequency response of the DW9255 SAW filter with matching components is shown in Fig. 3. The matching components used with the GP2010/15 device are shown in Fig. 4.

Fig.3 Typical frequency response of DW9255 SAW filter used as 2nd IF filter
SOURCE IMPEDANCE = 500Ω

LOAD IMPEDANCE = 1KΩ

GP2010 or GP2015

L1, L2 = 560nH COILCRAFT 1008

Fig.4 Typical matching components when used with GP2010 or GP2015 GPS Front-end IC

680nH COILCRAFT 1008

15pF VITRAMON (VJ0805A150JXA)

Pin 1 = IP-
Pin 2 = IP+
Pin 7 = OP+
Pin 8 = OP-

910nF COILCRAFT 1008

Fig.5 50Ω Matching network
PACKAGE DETAILS
Dimensions are shown thus: mm (in). For further package information, please contact your local Customer Service Centre.

NOTES
1. Controlling dimensions are millimetres.
2. This package outline diagram is for guidance only. Please contact your Mitel Semiconductor Customer Service Centre for further information.

12-PAD LEADLESS CHIP CARRIER (SEAM SEAL) - LCS12/1
PACKAGE DETAILS
Dimensions are shown thus: mm (in). For further package information, please contact your local Customer Service Centre.

12-PAD LEADLESS CHIP CARRIER (SLAM) - LCS12/4

NOTES
1. Controlling dimensions are millimetres.
2. This package outline diagram is for guidance only. Please contact your Mitel Semiconductor Customer Service Centre for further information.

HEADQUARTERS OPERATIONS
MITEL SEMICONDUCTOR
Cheney Manor, Swindon,
Wiltshire SN2 2QW, United Kingdom.
Tel: (01793) 518000
Fax: (01793) 518411

MITEL SEMICONDUCTOR
1500 Green Hills Road,
Scotts Valley, California 95066-4922
United States of America.
Tel (408) 438 2900
Fax: (408) 438 5576/6231

Internet: http://www.gpsemi.com

CUSTOMER SERVICE CENTRES
FRANCE & BENELUX
Les Ulis Cedex Tel: (1) 69 18 90 00 Fax : (1) 64 46 06 07
GERMANY
Munich Tel: (089) 419508-20 Fax : (089) 419508-55
ITALY
Milan Tel: (02) 6607151 Fax: (02) 66040993
JAPAN
Tokyo Tel: (03) 5276-5501 Fax: (03) 5276-5510
KOREA
Seoul Tel: (2) 5688141 Fax: (2) 5697933
NORTH AMERICA
Scotts Valley, USA Tel: (408) 438 2900 Fax: (408) 438 5576/6231
SOUTH EAST ASIA
Singapore Tel:(65) 3827708 Fax: (65) 3828872
SWEDEN
Stockholm Tel: 46 8 702 97 70 Fax: 46 8 640 47 36
TAIWAN, ROC
Taipei Tel: 886 2 25461260 Fax: 886 2 27190260
UK, EIRE, DENMARK, FINLAND & NORWAY
Swindon Tel: (01793) 728666 Fax : (01793) 518582

These are supported by Agents and Distributors in major countries world-wide.

© Mitel Corporation 1998 Publication No. DS3861 Issue No. 3.1 November 1997

TECHNICAL DOCUMENTATION – NOT FOR RESALE. PRINTED IN UNITED KINGDOM

All brand names and product names used in this publication are trademarks, registered trademarks or trade names of their respective owners.
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. trading as Zarlink Semiconductor or its subsidiaries (collectively “Zarlink”) is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.

This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request.

Purchase of Zarlink I²C components conveys a licence under the Philips I²C Patent rights to use these components in and I²C System, provided that the system conforms to the I²C Standard Specification as defined by Philips.

Zarlink and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.

Copyright 2001, Zarlink Semiconductor Inc. All Rights Reserved.

TECHNICAL DOCUMENTATION - NOT FOR RESALE