DOLBY PRO LOGIC SURROUND DECODER

DESCRIPTION

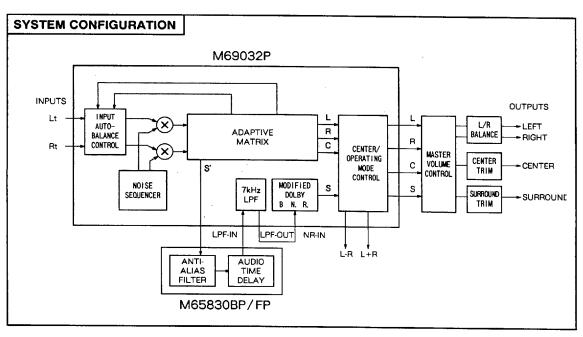
M69032P IC was developed for dolby pro logic surround systems.

This IC has almost all functions necessary for dolby pro logic surround decoders, such as input autobalance, noise sequencer and adaptive matrix. By combining this IC with M65830BP/FP digital delay IC, a 2 chip dolby prologic surround system can be formed.

Note: This device is produced under the license of Dolby Laboratories Licensing Corporation. This device is available only to licensees of Dolby Laboratories Licensing Corporation. Dolby and T are the registered trademarks of dolby laboratories licensing corporation.

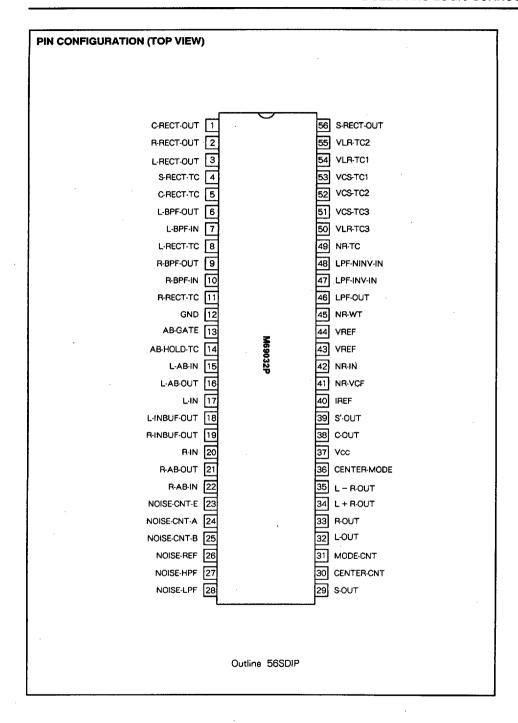
FEATURES

- Has almost all functions necessary for dolby prologic surround decoders
- input autobalance
- ■Input buffer
- Noise sequencer; controls noise generator in sequence with 2-bit digital data
- Adaptive matrix
- Center mode control

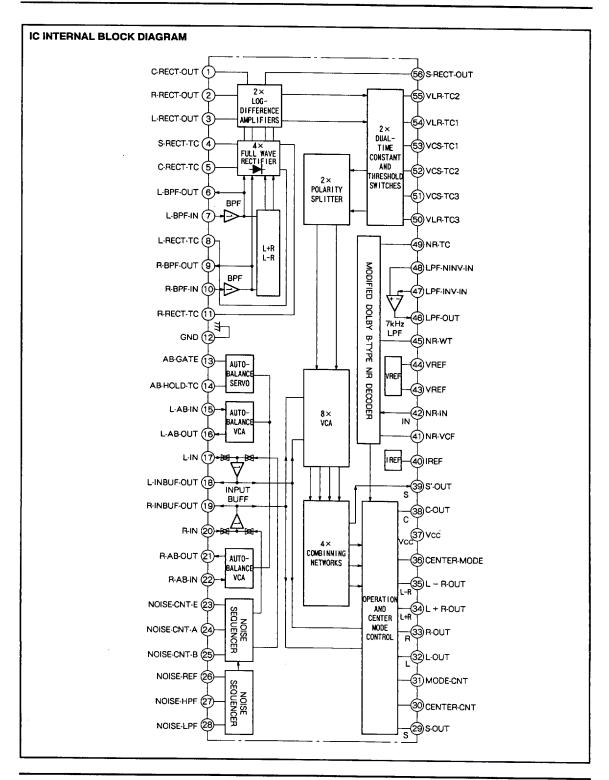

 Switches between ON and OFF, as well as between NORMAL, PHANTOM and WIDEBAND
- ■Modified dolby B type noise reduction
- Operation mode control 4-channel (left, right, center, surround), 3-channel (left, right, and center), 2-channel (input through)
- \blacksquare L+R output and L-R output

RECOMMENDED OPERATING CONDITIONS

 Supply voltage range
 Vcc = 9 to 13V


 Rated supply voltage
 Vcc = 12V

= 6249826 0022048 280 **=**


DOLBY PRO LOGIC SURROUND DECODER

6249826 0022049 117

MITSUBISH

DOLBY PRO LOGIC SURROUND DECODER

DOLBY PRO LOGIC SURROUND DECODER

ABSOLUTE MAXIMUM RATINGS (Ta = 25 ℃, unless otherwise noted)

Symbol	Parameter	Ratings	Unit
Vcc	Supply voltage	15	V
Pd	Power dissipation	700	mW
Topr	Operating temperature	-20 to +75	℃
Tstg	Storage temperature	-40 to +125	₩

RECOMMENDED OPERATING CONDITIONS

<u> </u>	Parameter		Took and kines		Limits				
Symbol			Test conditions	Min	Тур	Max	Unit		
Vop	Supply voltage	ge			9.0	12.0	13.0	V	
lcc	Circuit currer	nt		No signal		34.0	40.0	mA	
Vref	Reference voltage		No signal	3.5	4.0	4.4	V		
Vo-2ch		2ch mode		MODE-CNT PIN	0.0	_	0.8	٧	
Vc-3ch		3ch mode		MODE-CNT PIN	T -	OPEN	_		
Vo-4ch		4ch mode		MODE-CNT PIN	3.8	-	7.0	V	
Vocon	Control SW	0 / - 11		CENTER-CNT PIN	2.4	-	7.0	V	
Vocof		Center on/off	Center on/off	*	CENTER-CNT PIN	0.0	_	0.8	V
Vonon	threshold	A1 :		NOISE-CNT-E PIN	0.0	_	0.8	V	
Venof	1 .	Noise seq. on/off		NOISE-CNT-E PIN	3.2		7.0	V	
VcnsH	1	Noise seq.	Н	NOISE-CNT-A and NOISE-CNT-B PIN	3.2	-	7.0	V	
VonsL	1	channel select	L	NOISE-CNT-A and NOISE-CNT-B PIN	0.0	_	0.8	V	

ELECTRICAL CHARACTERISTICS (Ta = 25 ℃, Vcc = 12V, 0dB Reference is 300mV/1kHz at C-OUT, unless otherwise noted) 1. MODIFIED B NOISE REDUCTION (0dB Reference is 300mV/100Hz at S-OUT)

	5	T4		Limits			
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit	
GV-NR	Voltage gain	Vin = OdBd, f = 100Hz	-	9.0	-	dB	
Dec1		Vin = OdBd, f = 1kHz	- 1.6	- 0.1	1.4	dB	
Dec2		$V_{in} = -15 dBd, f = 1.4 kHz$	- 3.0	- 1.5	0.0	dB	
Dec3	Decode Responce	$V_{in} = -20 dBd$, $f = 1.4kHz$	- 4.9	- 3.4	- 1.9	₫B	
Dec4		$V_{in} = -40 dBd$, $f = 5kHz$	- 6.8	- 5.3	- 3.8	dB	
THD-NR	T.H.D	Vin = OdBd, f = 1kHz		0.07	0.3	%	
HR-NR	Headroom	Vcc = 9V at THD = 1.%	15.0	17.0	_	dB	
SN-NR	S.N Ratio	$R_g = 0 \Omega$, weighted CCIR/ARM	76	82	_	₫B	

2. NOISE SEQUENCER

	Parameter		Test conditions	Limits			Unit
Symbol			rest conditions	Min	Тур	Max	Uffile
Vno	Output noise level		•	- 15	12.5	- 10	dB
Vno-L	0	Lch		- 0.5	0.0	0.5	dB
Vno-R	Output noise level	Rch		- 0.5	0.0	0.5	dB
Vno-S'	accuracy relative to CCII	S' ch		- 0.5	0.0	0.5	dB

3. ADAPTIVE MATRIX

Symbol	Parameter	Test conditions	Limits			T
		. oot conditions	Min	Тур	Max	Unit
Vol	Output level accuracy relative to Cch L, R, S'ch out		- 0.5	0	0.5	dB
Mr	Matrix rejection relative to Lch R, C, S'ch out		25.0	40.0		₫B
THD-AM	T.H.D L, R, C, S'ch out			0.02	0.20	%
HR-AM	Headroom L, R, C, S'ch out	Vcc = 9V at T.H.D = 1 %	15.0	15.7	0.20	dB
SN-AM	Signal to noise ratio L, R, C, S'ch out	$R_g = 0 \Omega$, weighted CCIR/ARM	76	83		dB

4. AUTO BALANCE

Parameter	Test conditions		Limits		
	7 551 5511415715	Min	Тур	Max	Unit
Capture range			+5		dB
Error collection		_+		<u> </u>	
T.H.D Lt, Rt, out		 -		0.20	dB
Headroom Lt, Rt, out	Vcc = 9V at THD = 1%	15.0		0.20	<u>%</u>
S/N Lt, Rt, out					dB dB
	Capture range Error collection T.H.D Lt, Rt, out Headroom Lt, Rt, out	Capture range Error collection T.H.D Lt, Rt, out Headroom Lt, Rt, out Vcc = 9V at T.H.D = 1 %	Capture range	Min Typ	Min Typ Max

5. L+R & L-R OUTPUT

Parameter	Test conditions		Limits		
	Took conditions	Min	Тур	Max	Unit
Output level accuracy relative to Cch L + R, L - R ch		-1.0	0	1.0	dB
T.H.D			0.02	0.20	0/
Headroom	Vcc = 9V at THD = 1%	150		0.20	%
S/N					dB dB
, -	Г.H.D Headroom	Dutput level accuracy relative to Cch L + R, L - R ch T.H.D Headroom Vcc = 9V at T.H.D = 1 %	Dutput level accuracy Min relative to Cch L + R, L - R ch -1.0 T.H.D - Headroom Vcc = 9V at T.H.D = 1 % 15.0	Dutput level accuracy Min Typ relative to Cch L + R, L - R ch -1.0 0 r.H.D - 0.02 Headroom Vcc = 9V at T.H.D = 1 % 15.0 17.0	Dutput level accuracy Min Typ Max -1.0 0 1.0 r.H.D - 0.02 0.20 leadroom Vcc = 9V at T.H.D = 1% 15.0 17.0 -

FUNCTION DIAGRAMS

1. OPERATION MODE

Mode (Pin No)	MODE-CNT (Pin (19))	Note
2CH (Lt,Rt,S')	L	S' = Lt - Rt or Noise
3CH (L,C,R,S')	High Z	S' = Lt Rt or Noise
4CH (L,C,R,S'S)	Н	

3. NOISE SEQUENCER

Mode Pin name (Pin No)	NOISE-CNT-E (Pin 3)	NOISE-CNT-A (Pin 29)	NOISE-CNT-B (Pin 🚳)
Signal select	Н	X	X
Noise L	L.	L	L
Noise C	L	L	H
Noise R	L	Н	L
Noise S	L	Н	Н

2. CENTER MODE

Mode Pin name (Pin No)	CENTER-CNT (Pin 30)	CENTER-MODE (Pin ❤️)
Center off	L	X
Normal	Н	0.22 µF
Phantom	Н	OPEN
Wideband	Н	10μF

🖿 6249826 0022052 701 **=**

DOLBY PRO LOGIC SURROUND DECODER

PIN DESCRIPTION

Pin No.	Name	Function	Voltage	Description	Equivalent circuit
(9)	L – AB – IN	Autobalance, L-ch input Autobalance, R-ch input	4V 4V	Autobalance amplifier input pins Noninverting operational amplifier is applied to these pins. To provide DC bias pull them up by connecting external resistance (R11.1, 112: $22k\Omega$ to $75k\Omega$) to Vref.	Усс (5. 22) (40 и 8)
®	L – AB – OUT	Autobalance, L-ch output Autobalance, R-ch output	4V 4V	Autobalance amplifier output pins. They are controlled from adaptive martrix, so that signals are output with the imbalance between right and left corrected. They are normally direct-connected to, respectively, L-IN and R-IN described below.	Vcc 500 µ B 100 P C C C C C C C C C C C C C C C C C C
Ф 29	L – IN	L-ch input	4V 4V	Adaptive matrix input circuit. Noniverting operational amplifier is applied to the input pins. To provide DC bias, pull them up by connecting external resistance	VCC 2005
199	L - INBUF - OUT	L-ch input Buffer output R-ch input Buffer	4V 4V	$(22k\Omega$ to $75k\Omega$) to VREF if they are not directly connected to the autobalance output pins described above.	Ø. Ø Δ 50 μ 1.5m
89	L – OUT	L-ch output R-ch output	4V 4V	These pins output R-/L-channel inputs as they are when the operation mode is 2-channel. If the mode is 3-channel, these pins output Dolby 3 stereo R-/L-channel signals. When the mode is 4-channel, they output Dolby prologic R-/L-channel signals.	Vcc 100\$
⊗	C – OUT	C-ch output	4V	Does not output any signals when the operation mode is 2-channel or when the center mode is OFF or set to PHANTOM.	Vcc 100 π 700 μ Θ 700

DOLBY PRO LOGIC SURROUND DECODER

PIN DESCRIPTION (continued)

Pin No.	Name	Function	Voltage	Description	Equivalent circuit
⊗	S'-OUT	Sorround channel output	4V	Sorround channel output precedent to delay generator. Always outputs signals, irrespective of the operation mode (2-/3-/4-channel).	VCC 100 \$ 10 \(\text{100} \) \(1
&	L + R - OUT L - R - OUT	L-channel and R-channel summing output L-channel and R-channel subtraction output	4∨	Pin L + R - OUT outputs the sum of L-channel and R-channel signals that do not go through. adaptive matrix. Pin L + R - OUT outputs the difference between them. These pin always output signals, irrespective of the operation mode (2-/3-/4-channel).	Vcc 100\$ 4. € 10µ 500µ 500µ 500µ 500µ 500µ 500µ 500µ
@	LPF - INV - IN LPF - NINV - IN LPF - OUT	LPF inverted input LPF noninverted input LPF output	4V 4V 4V	Operational amplifier. This amplifier forms a 7kHz low-pass filter (LPS) with external components. Connect the noninverted input pin to VREF to from an LPS in the inverting amplifier style, and input signals by AC coupling (or by DC coupling if surround output is directly connected to LPS without delay generator).	Vcc 100\$ 500µ 18µ 777
@	NR – IN	Modified B- type noise reduction input	4∨	B-type noise reduction input pin. Connect directly to LPF-OUT in normal cases as shown in the application example. To input signals directly, connect by AC coupling, because noninverting operational amplifier is applied to this pin. Please note that the input/output phase is inverted at 180° in this case.	VCC VREF
⊗	S - OUT	Surround output	4V	This pin outputs surround signals decoded by modified B-type noise reduction. Outputs signals only when the mode is 4-channel. (Outputs 4-V DC in the 2- or 3-channel mode.) There is a gain of approximately 9dB between this output and noise reduction input. When connecting delay genetator behind modified B-type noise reduction, lower the gain by approximately 9dB at the LPF.	Vcc 100\$ 10μ 5500μ Δ

6249826 0022054 584 📟

PIN DESCRIPTION (continued)

Pin No.	Name	Function	Voltage	Description	Equivalent circuit			
Ø	NOISE - CNT - E	Signal noise selection		This pin controls the switchover between adjusting noise and signal. Control input voltage should be between OV to 8V.	Vcc \$50k			
Ø 8	NOISE - CNT - A	Noise output destination selection Noise output destination selection		These pin switches adjusting noise output destination according to 2-bit digital data. Control input voltage should be between OV to 8V.	₩ Vcc \$50k			
3 0	CENTER - CNT MODE - CNT	C-ch channel ON/OFF switching 2-/3-/4- channel switching		Controls the center channel (ON/OFF). Control input voltage should be between 0V to 8V. Controls the operation mode (2-/3-/4-channel). Control input voltage should be between 0V to 8V. Set to open in the 3-channel mode.	Vcc 47k			

TEST CONDITIONS

1) Mode sequence

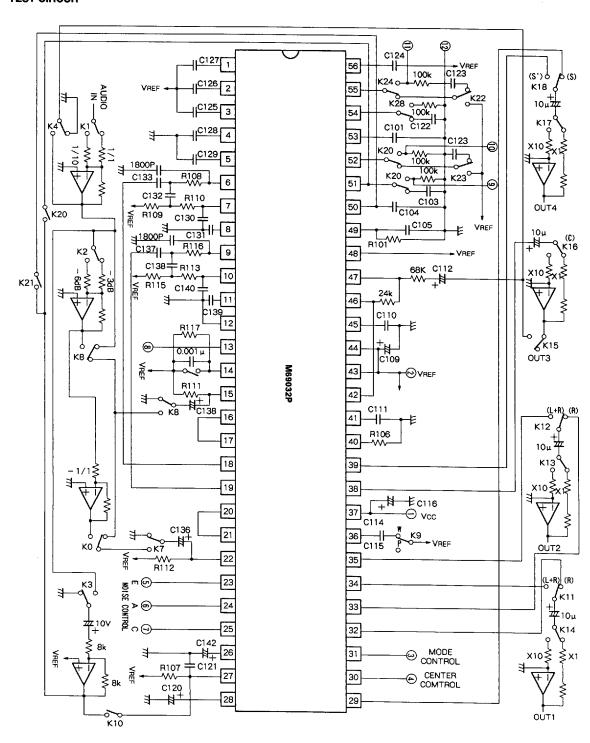
Noise	PPVI	PPVI	PPVI
INOISE	5	6	7
OFF	Ι	Х	Х
L	٦	L	L
С	L	٦	Τ
R	L	Н	L
S'	L	Η	Н

Channel mode	PPVI 3
2ch	L
3ch	Open
4ch	Н

_							
	CENTER	PPVI 4	К9				
	OFF	L	Х				
	ON	H	Х				
	Р	Н	OFF				
E	W	Н	ON				

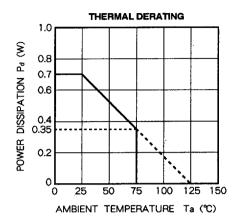
Auto balance	K19
OFF	ON
ON	OFF

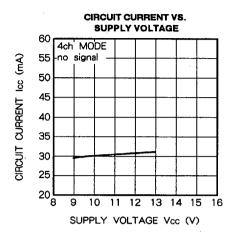
Note1. For noise sequencer, set K10 to ON except for VNO(white noise).

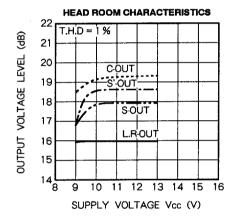

2) Input selection switch conditions

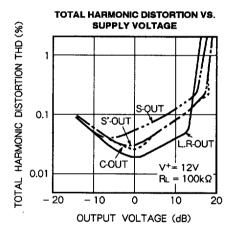
Function	K1	K2	K3	K4	K5	K6	K7	K8	K10	K20	K21
OFF	X	Х	Х	OFF	Х	· X	OFF	OFF	OFF	OFF	OFF
ATT 1/1	OFF	Х	Х	X	Х	X	Х	X	X	Х	Х
ATT 1/10	ON	X	Х	Х	Х	Х	X	Х	Х	Х	Х
L	Х	X	Х	OFF	OFF	Х	OFF	ON	OFF	OFF	OFF
С	X	OFF	Х	OFF	ON	OFF	ON	ON	OFF	OFF	OFF
R	X	Х	X	OFF	OFF	OFF	ON	OFF	OFF	OFF	OFF
S'	X	OFF	Х	OFF	ON	ON	ON	ON	OFF	OFF	OFF
S : Dolby	X	Х	Х	ON	Х	Х	OFF	OFF	OFF	OFF	OFF
LL : Collection level	X	OFF	Х	OFF	ON	ON	ON	ON ON	OFF	OFF	OFF
CP : Capture range	X	ON	×	OFF	ON	07	ON	S	OFF	OFF	OFF
CNT1 : Field through	X	Х	ON	OFF	Х	X	OFF	OFF	OFF	ON	OFF
CNT2 : Field through	X	X	ON	OFF	X	Х	OFF	OFF	OFF	OFF	ON

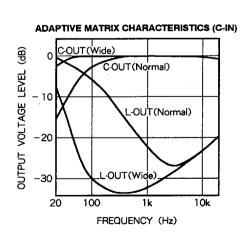
6249826 0022055 410 🖿

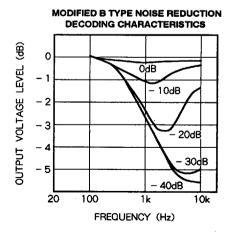

TEST CIRCUIT

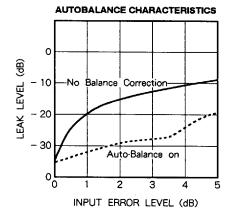



■ 6249826 0022056 357 **■**




TYPICAL CHARACTERISTICS





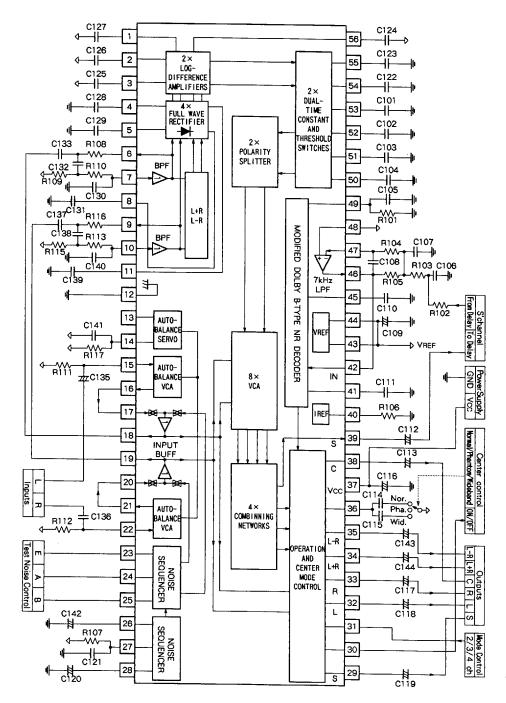
6249826 0022057 293 1

DOLBY PRO LOGIC SURROUND DECODER

OPTIONAL PARTS LIST

1. M69032P application circuits

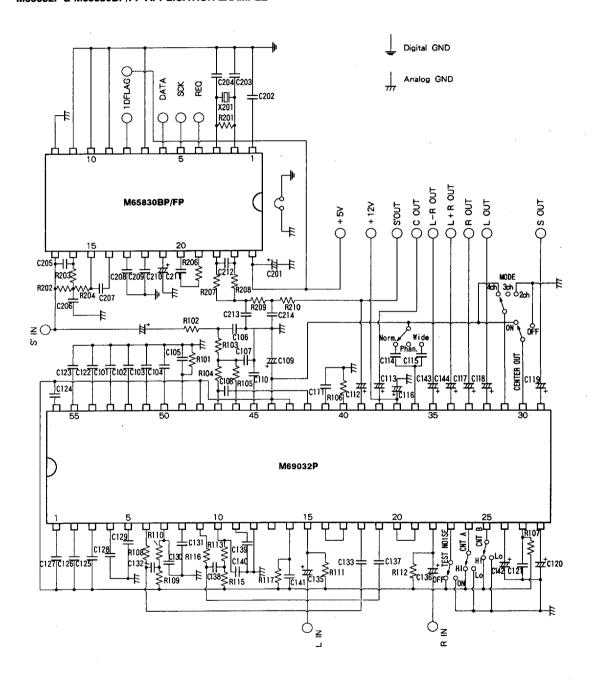
PARTS NO.	VALUE	TOL.		PARTS NO.	VALUE	TOL.		PARTS NO.	VALUE	TOL.	
C 101	4.7μF	20 %		C 123	0.22 µ F	10%		R 101	330kΩ	10%	
C 102	0.22 µF	10%		C 124	0.1 μF	20 %		R 102	8.2kΩ		
C 103	0.22 µF	10%		C 125	0.1 μF	20 %		R 103	8.2kΩ	5%	
C 104	0.22μF	10%		C 126	0.1 μF	20 %		R 104	8.2kΩ	5%	
C 105	0.68 µ F	10%		C 127	0.1 µ F	20 %		R 105	15kΩ	5%	
C 106	5600pF	10%		C 128	0.022 µF	5%		R 106	100kΩ	1%	
C 107	4700pF	10%		C 129	0.022 µF	5%		R 107	100kΩ	5%	
C 108	470pF	10%		C 130	680pF	5%		R 108	7.5kΩ	5%	
C 109	220 µF	10%	≥ 150µF	C 131	0.047µF	5%		R 109	15kΩ	5%	
C 110	0.047 µF	5%		C 132	0.1 μF	5%		R 110	47kΩ	5%	
C 111	5600pF	5%		C 133	0.1 μF	5%		R 111	22kΩ		
C 112	10μF			Ç 135	10μF			R 112	22kΩ		• 1
C 113	10μF	Į.		C 136	10μF			R 113	47kΩ	5%	
C 114	0.22 µF	10%		C 137	0.1 μF	5%		R 115	15kΩ	5%	
C 115	10μF	10%		C 138	0.1 μF	5%		R 116	7.5kΩ	5%	
C 116	100 µ F		≥ 100 µF	C 139	0.047µF	5%		R 117	10ΜΩ	10%	
C 117	10μF			C 140	680pF	5%	× .				
C 118	10µF			C 141	10µF	20 %	Low leak				
C 119	10μF			C 142	10µF						
C 120	22µF	10%		C 143	10µF						
C 121	4700pF	5%		C 144	10μF						
C 122	4.7µF	20 %									


2. M69032P & M65830BP/FP application circuits

PARTS NO.	VALUE	TOL.		PARTS NO.	VALUE	TOL.		PARTS NO.	VALUE	TOL.	
C 101	4.7µF	20 %		C 131	0.047µF	5%		R 101	330kΩ	10%	
C 102	0.22 µ F	10%		C 132	0.1 µ F	5%		R 102	short		
C 103	0.22 µ F	10%		C 133	0.1 μF	5%		R 103	15kΩ	5%	
C 104	0.22 µF	10%		C 135	10µF			R 104	15kΩ	5%	
C 105	0.68 µF	10%		C 136	10µF			R 105	15kΩ	5%	,
C 106	open			C 137	0.1 μF	5%		R 106	100kΩ	1 %	
C 107	2200pF	10%		C 138	0.1 μF	5%		R 107	100kΩ	5%	
C 108	470pF	10%		C 139	0.047 µF	5%		R 108	7.5kΩ	5%	
C 109	220 µF	10%	≩ 150μF	C 140	680pF	5%		R 109	15kΩ	5%	
C 110	0.047 µF	5%		C 141	10μF	20%	Low leak	R 110 、	47kΩ	5%	
C 111	5600pF	5%		C 142	10μF			R 111	22kΩ		
C 112	1μF			C 143	10μF			R 112	22kΩ		
C 113	10μF			C 144	10μF			R 113	47kΩ	5%	
C 114	0.22 µ F	10%						R 115	15kΩ	5%	·
C 115	10μF	10%						R 116	7.5kΩ	5%	
C 116	100 µ F		≥ 100 µF	C 201	100 µ F			R 117	10ΜΩ	10%	
C 117	10µF			C 202	0.1 µ F			R 201	1ΜΩ		
C 118	10μF			C 203	100pF			R 202	15kΩ		
C 119	10µF			C 204	100pF			R 203	18kΩ		
C 120	22µF	10%		C 205	470pF			R 204	15kΩ		
C 121	4700pF	5%		C 206	3300pF			R 205	short		
C 122	4.7µF	20 %		C 207	0.068 µF			R 206	30 Ω		
C 123	0.22 µ F	10%		C 208	0.1 µ F			R 207	5.6kΩ		
C 124	0.1 μF	20 %		C 209	0.1 μF			R 208	18kΩ		
C 125	0.1 μF	20 %		C 210	47µF			R 209	7.5kΩ		
C 126	0.1 µ F	20 %		C 211	0.068µF			R 210	8.2kΩ		
C 127	0.1 μF	20 %		C 212	470pF						
C 128	0.022 µF	5%		C 213	5600pF			X 201	2MHz		
C 129	0.022 µ F	5%		C 214	5600pF						
C 130	680pF	5%		C 215	1μF						

| 6249826 0022059 066 |||

APPLICATION EXAMPLE



Units Resistance : Q Capacitance : F

M69032P & M65830BP/FP APPLICATION EXAMPLE

Units Resistance : Q Capacitance : F

