FEATURES

- High Input Sensitivity $I_{\mathrm{FT}}=1.3 \mathrm{~mA}$
- 600/700/800 V Blocking Voltage
- 300 mA On-State Current
- High Static dv/dt 10,000 V/ μ sec., typical
- Inverse Parallel SCRs Provide Commutating dv/dt >10 kV/ $\mu \mathrm{sec}$
- Very Low Leakage <10 $\mu \mathrm{A}$
- Isolation Test Voltage from Double Molded Package $5300 \mathrm{~V}_{\text {RMS }}$
- Package, 6-Pin DIP
- Underwriters Lab File \#E52744
- VDE Approval \#0884 Available with Option 1

DESCRIPTION

The IL421x consists of an AIGaAs IRLED optically coupled to a pair of photosensitive non-zero crossing SCR chips and are connected inversely parallel to form a TRIAC. These three semiconductors are assembled in a six pin 0.3 inch dual in-line package, using high insulation double molded, over/under leadframe construction.

High input sensitivity is achieved by using an emitter follower phototransistor and a cascaded SCR predriver resulting in an LED trigger current of less than 1.3 mA (DC).

The IL421x uses two discrete SCRs resulting in a commutating $\mathrm{dv} / \mathrm{dt}$ of greater than $10 \mathrm{kV} / \mathrm{\mu s}$. The use of a proprietary $d v / d t$ clamp results in a static $d v / d t$ of greater than $10 \mathrm{kV} / \mu \mathrm{s}$. This clamp circuit has a MOSFET that is enhanced when high dv/dt spikes occur between MT1 and MT2 of the TRIAC. The FET clamps the base of the phototransistor when conducting, disabling the internal SCR predriver.
The blocking voltage of up to 800 V permits control of off-line voltages up to 240 VAC, with a safety factor of more than two, and is sufficient for as much as 380 VAC. Current handling capability is up to 300 mA RMS, continuous at $25^{\circ} \mathrm{C}$.

The IL421x isolates low-voltage logic from 120, 240, and 380 VAC lines to control resistive inductive, or capacitive loads including motors solenoids, high current thyristors or TRIAC and relays.
Applications include solid-state relays, industrial controls, office equipment, and consumer appliances.

Dimensions in inches (mm)

Maximum Ratings
Emitter
Reverse Voltage 6.0 V
Forward Current 60 mA
Surge Current 2.5 A
Power Dissipation 100 mW
Derate Linearly from $25^{\circ} \mathrm{C}$ $1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Thermal Resistance $750^{\circ} \mathrm{C} / \mathrm{W}$

Detector

Peak Off-State Voltage
IL4216 600 V
IL4217 700 V
IL4218 800 V
RMS On-State Current 300 mA
Single Cycle Surge 3.0 A
Total Power Dissipation 500 mW
Derate Linearly from $25^{\circ} \mathrm{C}$ $6.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Thermal Resistance $150^{\circ} \mathrm{C} / \mathrm{W}$
Package
Lead Soldering Temperature $260^{\circ} \mathrm{C} / 5.0 \mathrm{sec}$
Creepage Distance $\geq 7.0 \mathrm{~mm}$
Clearance $>7.0 \mathrm{~mm}$
Storage Temperature $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Isolation Test Voltage
5300 V RMSIsolation Resistance
$V_{\mathrm{IO}}=500 \mathrm{~V}, T_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $\geq 10^{12} \Omega$
$V_{\mathrm{IO}}=500 \mathrm{~V}, T_{\mathrm{A}}=100^{\circ} \mathrm{C}$ $\geq 10^{11} \Omega$

Characteristics $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
Emitter						
Forward Voltage	$V_{\text {F }}$	-	1.3	1.5	V	$I_{\mathrm{F}}=20 \mathrm{~mA}$
Breakdown Voltage	$V_{\text {BR }}$	6.0	30	-	V	$I_{\mathrm{R}}=10 \mathrm{~mA}$
Reverse Current	$I_{\text {R }}$	-	0.1	10	$\mu \mathrm{A}$	$V_{\mathrm{R}}=6.0 \mathrm{~V}$
Capacitance	C°	-	40	-	pF	$V_{\mathrm{F}}=\mathrm{o} \mathrm{V}, \mathrm{f}=1.0 \mathrm{MHz}$
Thermal Resistance, Junction to Lead	$R_{\text {THJL }}$	-	750	-	K/W	-
Output Detector						
Repetitive Peak Off-State Voltage IL4216 IL4217 IL4218	$V_{\text {DRM }}$ $V_{\text {DRM }}$ $V_{\text {DRM }}$	$\begin{array}{\|l} 600 \\ 700 \\ 800 \end{array}$	$\begin{aligned} & 650 \\ & 750 \\ & 850 \end{aligned}$	-	$\begin{aligned} & V \\ & V \\ & V \end{aligned}$	$\begin{aligned} & I_{\text {DRM }}=100 \mu \mathrm{~A} \\ & \text { I DRM }=100 \mu \mathrm{~A} \\ & \text { I DRM }^{2}=100 \mu \mathrm{~A} \end{aligned}$
$\begin{aligned} & \text { Off-State Voltage } \\ & \text { IL4216 } \\ & \text { IL4217 } \\ & \text { IL4218 } \end{aligned}$	$V_{\mathrm{D}(\mathrm{RMS})}$ $V_{\mathrm{D}(\mathrm{RMS})}$ $V_{\mathrm{D}(\mathrm{RMS})}$	$\begin{array}{\|l\|} 424 \\ 484 \\ 565 \end{array}$	$\begin{aligned} & 460 \\ & 536 \\ & 613 \end{aligned}$	-	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & I_{\mathrm{D}(\mathrm{RMS})}=70 \mu \mathrm{~A} \\ & I_{\mathrm{D}(\mathrm{RMS})}=70 \mu \mathrm{~A} \\ & I_{\mathrm{D}(\mathrm{RMS})}=70 \mu \mathrm{~A} \end{aligned}$
Off-State Current	$I_{\text {D(RMS })}$	-	10	100	$\mu \mathrm{A}$	$V_{\mathrm{D}}=600 \mathrm{~V}, T_{\mathrm{A}}=100^{\circ} \mathrm{C}$
Reverse Current	$I_{\text {R(RMS }}$	-	10	100	$\mu \mathrm{A}$	$V_{\mathrm{R}}=600 \mathrm{~V}, T_{\mathrm{A}}=100^{\circ} \mathrm{C}$
On-State Voltage	$V_{\text {TM }}$	-	1.7	3.0	V	$\mathrm{I}_{\mathrm{T}}=300 \mathrm{~mA}$
On-State Current	$I_{\text {TM }}$	-	-	300	mA	$\mathrm{PF}=1.0, \mathrm{~V}_{\text {T(RMS })}=1.7 \mathrm{~V}$
Surge (Non-Repetitive) On-State Current	$I_{\text {TSM }}$	-	-	3.0	A	$\mathrm{f}=50 \mathrm{~Hz}$
Holding Current	I_{H}	-	65	200	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{T}}=3.0 \mathrm{~V}$
Latching Current	$I_{\llcorner }$	-	5.0	-	mA	$\mathrm{V}_{\mathrm{T}}=2.2 \mathrm{~V}$
LED Trigger Current	$I_{\text {FT }}$	-	0.7	1.3	mA	$\mathrm{V}_{\text {AK }}=5.0 \mathrm{~V}$
Turn-On Time	$t_{\text {ON }}$	-	35	-	$\mu \mathrm{S}$	$\mathrm{V}_{\mathrm{RM}}=\mathrm{V}_{\mathrm{DM}}=424 \mathrm{VAC}$
Turn-Off Time	$t_{\text {OFF }}$	-	50	-	$\mu \mathrm{s}$	$\mathrm{PF}=1.0, \mathrm{I}_{\mathrm{T}}=300 \mathrm{~mA}$
Critical State of Rise of Off-State Voltage	$\mathrm{dv} / \mathrm{dt}_{\mathrm{cr}}$	10000	-	-	$\mathrm{V} / \mathrm{\mu s}$	$V_{\mathrm{D}}=0.67 V_{\text {DRM }}, T_{\mathrm{j}}=25^{\circ} \mathrm{C}$
		5000	-	-		$V_{\mathrm{D}}=0.67 \mathrm{~V}_{\text {DRM }}, T_{\mathrm{j}}=80^{\circ} \mathrm{C}$
Critical Rate of Rise of Voltage at Current Commutation	$\mathrm{dv} / \mathrm{dt} \mathrm{cra}$	10000	-	-	$\mathrm{V} / \mathrm{\mu s}$	$\begin{aligned} & V_{\mathrm{D}}=0.67 \mathrm{~V}_{\mathrm{DRM}},{\mathrm{di} / \mathrm{dt}_{\mathrm{crq}} \leq 15 \mathrm{~A} / \mathrm{ms}}^{T_{\mathrm{j}}=25^{\circ} \mathrm{C}} \end{aligned}$
		5000	-	-		$\begin{aligned} & V_{\mathrm{D}}=0.67 \mathrm{~V}_{\mathrm{DRM}}, \mathrm{di}_{\mathrm{d}} / \mathrm{dt}_{\mathrm{crq}} \leq 15 \mathrm{~A} / \mathrm{ms} \\ & T_{\mathrm{j}}=80^{\circ} \mathrm{C} \end{aligned}$
Off-State Current	di/dt	-	100	-	A/ms	$\mathrm{I}_{\mathrm{T}}=300 \mathrm{~mA}$
Thermal Resistance, Junction to Lead	$R_{\text {THJL }}$	-	150	-	K/W	-
Package						
Critical Rate of Rise of Coupled Input-Output Voltage	$d v_{(I O)} / \mathrm{dt}$	5000	-	-	V/us	$\mathrm{I}_{\mathrm{T}}=0 \mathrm{~A}, \mathrm{~V}_{\mathrm{RM}}=\mathrm{V}_{\mathrm{DM}}=300 \mathrm{VAC}$
Common Mode Coupling Capacitor	$C_{\text {CM }}$	-	0.01	-	pF	-
Package Capacitance	$C_{\text {IO }}$	-	0.8	-	pF	$\mathrm{f}=1.0 \mathrm{MHz}, V_{\text {IO }}=0 \mathrm{~V}$

Figure 1. LED forward current vs. forward voltage

Figure 2. Forward voltage versus forward current

Figure 3. Peak LED current vs. duty factor, Tau

Figure 4. Maximum LED power dissipation

Figure 5. On-state terminal voltage vs. terminal current

Figure 6. Maximum output power dissipation

Power Factor Considerations

A snubber isn't needed to eliminate false operation of the TRIAC driver because of the IL411's high static and commutating dv/dt with loads between 1 and 0.8 power factors. When inductive loads with power factors less than 0.8 are being driven, include a RC snubber or a single capacitor directly across the device to damp the peak commutating dv/dt spike. Normally a commutating dv/dt causes a turning-off device to stay on due to the stored energy remaining in the turning-off device.

But in the case of a zero voltage crossing optotriac, the commutating $\mathrm{dv} / \mathrm{dt}$ spikes can inhibit one half of the TRIAC from turning on. If the spike potential exceeds the inhibit voltage of the zero cross detection circuit, half of the TRIAC will be heldoff and not turn-on. This hold-off condition can be eliminated by using a snubber or capacitor placed directly across the optotriac as shown in Figure 7. Note that the value of the capacitor increases as a function of the load current.
The hold-off condition also can be eliminated by providing a higher level of LED drive current. The higher LED drive provides a larger photocurrent which causer. the phototransistor to turn-on before the commutating spike has activated the zero cross network. Figure 8 shows the relationship of the LED drive for power factors of less than 1.0. The curve shows that if a device requires 1.5 mA for a resistive load, then 1.8 times (2.7 mA) that amount would be required to control an inductive load whose power factor is less than 0.3.

Figure 7. Shunt capacitance versus load current versus power factor

Figure 8. Normalized LED trigger current versus power factor

